scispace - formally typeset
Search or ask a question
Author

Daniel Riedlbauer

Bio: Daniel Riedlbauer is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Beam (structure) & Finite element method. The author has an hindex of 5, co-authored 8 publications receiving 179 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the lifetime, width and depth of the pools of molten powder material are analyzed for different beam powers, scan speeds and line energies in experiments and simulations, and a thermal finite element simulation tool is used to simulate the temperature distribution in the selective electron beam melting process.
Abstract: Selective electron beam melting of Ti-6Al-4V is a promising additive manufacturing process to produce complex parts layer-by-layer additively. The quality and dimensional accuracy of the produced parts depend on various process parameters and their interactions. In the present contribution, the lifetime, width and depth of the pools of molten powder material are analyzed for different beam powers, scan speeds and line energies in experiments and simulations. In the experiments, thin-walled structures are built with an ARCAM AB A2 selective electron beam melting machine and for the simulations a thermal finite element simulation tool is used, which is developed by the authors to simulate the temperature distribution in the selective electron beam melting process. The experimental and numerical results are compared and a good agreement is observed. The lifetime of the melt pool increases linearly with the line energy, whereby the melt pool dimensions show a nonlinear relation with the line energy.

103 citations

Journal ArticleDOI
TL;DR: In this paper, the laser energy input into a powder bulk for different process parameters by comparing temperature distributions and the size of melting pools is analyzed and compared to numerical results from finite element simulations of the highly nonlinear thermal problem.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of the monolithic and adiabatic split approach for nonlinear thermomechanical problems was compared with the Euler backward integration scheme for linear problems.
Abstract: The present contribution is concerned with the macroscopic modelling of the selective electron beam melting process by using the finite element method. The modelling and simulation of the selective electron beam melting process involves various challenges: complex material behaviour, phase changes, thermomechanical coupling, high temperature gradients, different time and length scales etc. The present contribution focuses on performance considerations of solution approaches for thermomechanically coupled problems, i.e. the monolithic and the adiabatic split approach. The material model is restricted to nonlinear thermoelasticity with temperature-dependent material parameters. As a numerical example a straight scanning path is simulated, the predicted temperatures and stresses are analysed and the performance of the two algorithms is compared. The adiabatic split approach turned out to be much more efficient for linear thermomechanical problems, i.e. the solution time is three times less than with the monolithic approach. For nonlinear problems, stability issues necessitated the use of the Euler backward integration scheme, and therefore, the adiabatic split approach required small time steps for reasonable accuracy. Thus, for nonlinear problems and in combination with the Euler backward integration scheme, the monolithic solver turned out to be more efficient.

49 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first results regarding the realization of multi-material parts by Simultaneous Laser Beam Melting (SLBM) of polymers, which allows the layerwise generation of parts consisting of different polymer materials within one building process.
Abstract: In this paper, first results regarding the realization of multi-material parts by Simultaneous Laser Beam Melting (SLBM) of polymers are presented. This new approach allows the layerwise generation of parts consisting of different polymer materials within one building process. Besides the typical advantages of additive manufacturing technologies, such parts can fulfill different product requirements concomitant and therefore could enlarge the overall field of application. The powder materials used for this paper are polyethylene (PE) and a polyamide based thermoplastic elastomer (TPE). After depositing the powder materials next to each other, infrared-emitters heat the lower melting polymer and a CO2 laser provides the preheating temperature of the higher melting polymer. In the last step, a thulium fibre laser melts the two preheated powders simultaneously. The realized specimens are characterized by cross sections and their tensile strengths are determined. Additionally, the new approach of the simultaneous energy irradiation is investigated using a Finite Element Analysis in order to gain a more profound process understanding. In that sense, the influence of the size of the exposure area on the reachable maximum temperatures inside that area was analyzed by the simulation and compared to experimental studies.

11 citations

Proceedings ArticleDOI
22 May 2015
TL;DR: In this paper, a finite element simulation of the thermomechanical material behavior in the selective laser melting process for PA12 is presented, where an adaptive mesh refinement is applied for increasing the accuracy of the simulation.
Abstract: The present contribution is concerned with the finite element simulation of the thermomechanical material behavior in the selective laser melting process for PA12. In the process shrinkage of the powder material is observed when becoming melt, as the porous character of the powder vanishes due to the phase transition. A nonlinear thermomechanical finite element model is developed, which captures the shrinkage of the material and includes temperature dependent material parameters. The model is used to simulate the shrinkage of the material in the process, where an adaptive mesh refinement is applied for increasing the accuracy of the simulation. The results are qualitatively compared with experimental data and show a good agreement.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: The goal of this review is to connect the various additive manufacturing techniques with the monomeric and polymeric materials they use while highlighting emerging material-based developments.

1,121 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a thermo-mechanical model to better understand the effect of laser scan strategy on the generation of residual stress in selective laser melting (SLM).
Abstract: Selective laser melting (SLM) is an attractive technology, enabling the manufacture of customised, complex metallic designs, with minimal wastage. However, uptake by industry is currently impeded by several technical barriers, such as the control of residual stress, which have a detrimental effect on the manufacturability and integrity of a component. Indirectly, these impose severe design restrictions and reduce the reliability of components, driving up costs. This paper uses a thermo-mechanical model to better understand the effect of laser scan strategy on the generation of residual stress in SLM. A complex interaction between transient thermal history and the build-up of residual stress has been observed in the two laser scan strategies investigated. The temperature gradient mechanism was discovered for the creation of residual stress. The greatest stress component was found to develop parallel to the scan vectors, creating an anisotropic stress distribution in the part. The stress distribution varied between laser scan strategies and the cause has been determined by observing the thermal history during scanning. Using this, proposals are suggested for designing laser scan strategies used in SLM.

495 citations

Journal ArticleDOI
TL;DR: In this paper, an overview over laser-based additive manufacturing with comments on the main steps necessary to build parts to introduce the complexity of the whole process chain is presented. But despite good sales of AM machines, there are still several challenges hindering a broad economic use of AM.

415 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: This paper provides an overview on the main additive manufacturing/3D printing technologies suitable for many satellite applications and, in particular, radio-frequency components.
Abstract: This paper provides an overview on the main additive manufacturing/3D printing technologies suitable for many satellite applications and, in particular, radio-frequency components. In fact, nowadays they have become capable of producing complex net-shaped or nearly net-shaped parts in materials that can be directly used as functional parts, including polymers, metals, ceramics, and composites. These technologies represent the solution for low-volume, high-value, and highly complex parts and products.

399 citations