scispace - formally typeset
Search or ask a question
Author

Daniel S. Jeon

Bio: Daniel S. Jeon is an academic researcher from KAIST. The author has contributed to research in topics: Hyperspectral imaging & Specular reflection. The author has an hindex of 8, co-authored 17 publications receiving 287 citations.

Papers
More filters
Journal ArticleDOI
20 Nov 2017
TL;DR: A novel hyperspectral image reconstruction algorithm, which overcomes the long-standing tradeoff between spectral accuracy and spatial resolution in existing compressive imaging approaches and introduces a novel optimization method, which jointly regularizes the fidelity of the learned nonlinear spectral representations and the sparsity of gradients in the spatial domain.
Abstract: We present a novel hyperspectral image reconstruction algorithm, which overcomes the long-standing tradeoff between spectral accuracy and spatial resolution in existing compressive imaging approaches. Our method consists of two steps: First, we learn nonlinear spectral representations from real-world hyperspectral datasets; for this, we build a convolutional autoencoder which allows reconstructing its own input through its encoder and decoder networks. Second, we introduce a novel optimization method, which jointly regularizes the fidelity of the learned nonlinear spectral representations and the sparsity of gradients in the spatial domain, by means of our new fidelity prior. Our technique can be applied to any existing compressive imaging architecture, and has been thoroughly tested both in simulation, and by building a prototype hyperspectral imaging system. It outperforms the state-of-the-art methods from each architecture, both in terms of spectral accuracy and spatial resolution, while its computational complexity is reduced by two orders of magnitude with respect to sparse coding techniques. Moreover, we present two additional applications of our method: hyperspectral interpolation and demosaicing. Last, we have created a new high-resolution hyperspectral dataset containing sharper images of more spectral variety than existing ones, available through our project website.

152 citations

Journal ArticleDOI
TL;DR: This work presents a compact, diffraction-based snapshot hyperspectral imaging method, using only a novel diffractive optical element (DOE) in front of a conventional, bare image sensor, and introduces a novel DOE design that generates an anisotropic shape of the spectrally-varying PSF.
Abstract: Traditional snapshot hyperspectral imaging systems include various optical elements: a dispersive optical element (prism), a coded aperture, several relay lenses, and an imaging lens, resulting in an impractically large form factor. We seek an alternative, minimal form factor of snapshot spectral imaging based on recent advances in diffractive optical technology. We thereupon present a compact, diffraction-based snapshot hyperspectral imaging method, using only a novel diffractive optical element (DOE) in front of a conventional, bare image sensor. Our diffractive imaging method replaces the common optical elements in hyperspectral imaging with a single optical element. To this end, we tackle two main challenges: First, the traditional diffractive lenses are not suitable for color imaging under incoherent illumination due to severe chromatic aberration because the size of the point spread function (PSF) changes depending on the wavelength. By leveraging this wavelength-dependent property alternatively for hyperspectral imaging, we introduce a novel DOE design that generates an anisotropic shape of the spectrally-varying PSF. The PSF size remains virtually unchanged, but instead the PSF shape rotates as the wavelength of light changes. Second, since there is no dispersive element and no coded aperture mask, the ill-posedness of spectral reconstruction increases significantly. Thus, we propose an end-to-end network solution based on the unrolled architecture of an optimization procedure with a spatial-spectral prior, specifically designed for deconvolution-based spectral reconstruction. Finally, we demonstrate hyperspectral imaging with a fabricated DOE attached to a conventional DSLR sensor. Results show that our method compares well with other state-of-the-art hyperspectral imaging methods in terms of spectral accuracy and spatial resolution, while our compact, diffraction-based spectral imaging method uses only a single optical element on a bare image sensor.

78 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: A novel method to learn a parallax prior from stereo image datasets by jointly training two-stage networks that enhances the spatial resolution of stereo images significantly more than single-image super-resolution methods.
Abstract: We present a novel method that can enhance the spatial resolution of stereo images using a parallax prior. While traditional stereo imaging has focused on estimating depth from stereo images, our method utilizes stereo images to enhance spatial resolution instead of estimating disparity. The critical challenge for enhancing spatial resolution from stereo images: how to register corresponding pixels with subpixel accuracy. Since disparity in traditional stereo imaging is calculated per pixel, it is directly inappropriate for enhancing spatial resolution. We, therefore, learn a parallax prior from stereo image datasets by jointly training two-stage networks. The first network learns how to enhance the spatial resolution of stereo images in luminance, and the second network learns how to reconstruct a high-resolution color image from high-resolution luminance and chrominance of the input image. Our two-stage joint network enhances the spatial resolution of stereo images significantly more than single-image super-resolution methods. The proposed method is directly applicable to any stereo depth imaging methods, enabling us to enhance the spatial resolution of stereo images.

74 citations

Journal ArticleDOI
TL;DR: This work presents a complete polarimetric BRDF (pBRDF) model that can define mixed polarization of both specular and diffuse reflection, and proposes a novel inverse-rendering method with joint optimization of pBRDF and normals to capture spatially-varying material appearance.
Abstract: Capturing appearance often requires dense sampling in light-view space, which is often achieved in specialized, expensive hardware setups. With the aim of realizing a compact acquisition setup without multiple angular samples of light and view, we sought to leverage an alternative optical property of light, polarization. To this end, we capture a set of polarimetric images with linear polarizers in front of a single projector and camera to obtain the appearance and normals of real-world objects. We encountered two technical challenges: First, no complete polarimetric BRDF model is available for modeling mixed polarization of both specular and diffuse reflection. Second, existing polarization-based inverse rendering methods are not applicable to a single local illumination setup since they are formulated with the assumption of spherical illumination. To this end, we first present a complete polarimetric BRDF (pBRDF) model that can define mixed polarization of both specular and diffuse reflection. Second, by leveraging our pBRDF model, we propose a novel inverse-rendering method with joint optimization of pBRDF and normals to capture spatially-varying material appearance: per-material specular properties (including the refractive index, specular roughness and specular coefficient), per-pixel diffuse albedo and normals. Our method can solve the severely ill-posed inverse-rendering problem by carefully accounting for the physical relationship between polarimetric appearance and geometric properties. We demonstrate how our method overcomes limited sampling in light-view space for inverse rendering by means of polarization.

60 citations

Journal ArticleDOI
TL;DR: An ultrathin digital camera inspired by the vision principle of Xenos peckii, an endoparasite of paper wasps, which has an unusual visual system that exhibits distinct benefits for high resolution and high sensitivity, unlike the compound eyes found in most insects and some crustaceans.
Abstract: Increased demand for compact devices leads to rapid development of miniaturized digital cameras. However, conventional camera modules contain multiple lenses along the optical axis to compensate for optical aberrations that introduce technical challenges in reducing the total thickness of the camera module. Here, we report an ultrathin digital camera inspired by the vision principle of Xenos peckii, an endoparasite of paper wasps. The male Xenos peckii has an unusual visual system that exhibits distinct benefits for high resolution and high sensitivity, unlike the compound eyes found in most insects and some crustaceans. The biologically inspired camera features a sandwiched configuration of concave microprisms, microlenses, and pinhole arrays on a flat image sensor. The camera shows a field-of-view (FOV) of 68 degrees with a diameter of 3.4 mm and a total track length of 1.4 mm. The biologically inspired camera offers a new opportunity for developing ultrathin cameras in medical, industrial, and military fields.

50 citations


Cited by
More filters
Book
01 Dec 1988
TL;DR: In this paper, the spectral energy distribution of the reflected light from an object made of a specific real material is obtained and a procedure for accurately reproducing the color associated with the spectrum is discussed.
Abstract: This paper presents a new reflectance model for rendering computer synthesized images. The model accounts for the relative brightness of different materials and light sources in the same scene. It describes the directional distribution of the reflected light and a color shift that occurs as the reflectance changes with incidence angle. The paper presents a method for obtaining the spectral energy distribution of the light reflected from an object made of a specific real material and discusses a procedure for accurately reproducing the color associated with the spectral energy distribution. The model is applied to the simulation of a metal and a plastic.

1,401 citations

Journal ArticleDOI
TL;DR: A survey on recent advances of image super-resolution techniques using deep learning approaches in a systematic way, which can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR.
Abstract: Image Super-Resolution (SR) is an important class of image processing techniqueso enhance the resolution of images and videos in computer vision. Recent years have witnessed remarkable progress of image super-resolution using deep learning techniques. This article aims to provide a comprehensive survey on recent advances of image super-resolution using deep learning approaches. In general, we can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR. In addition, we also cover some other important issues, such as publicly available benchmark datasets and performance evaluation metrics. Finally, we conclude this survey by highlighting several future directions and open issues which should be further addressed by the community in the future.

837 citations

01 Jan 2010
TL;DR: A passive stereo system for capturing the 3D geometry of a face in a single-shot under standard light sources is described, modified of standard stereo refinement methods to capture pore-scale geometry, using a qualitative approach that produces visually realistic results.
Abstract: This paper describes a passive stereo system for capturing the 3D geometry of a face in a single-shot under standard light sources. The system is low-cost and easy to deploy. Results are submillimeter accurate and commensurate with those from state-of-the-art systems based on active lighting, and the models meet the quality requirements of a demanding domain like the movie industry. Recovered models are shown for captures from both high-end cameras in a studio setting and from a consumer binocular-stereo camera, demonstrating scalability across a spectrum of camera deployments, and showing the potential for 3D face modeling to move beyond the professional arena and into the emerging consumer market in stereoscopic photography. Our primary technical contribution is a modification of standard stereo refinement methods to capture pore-scale geometry, using a qualitative approach that produces visually realistic results. The second technical contribution is a calibration method suited to face capture systems. The systemic contribution includes multiple demonstrations of system robustness and quality. These include capture in a studio setup, capture off a consumer binocular-stereo camera, scanning of faces of varying gender and ethnicity and age, capture of highly-transient facial expression, and scanning a physical mask to provide ground-truth validation.

254 citations

Journal ArticleDOI
TL;DR: Mitsuba 2 is proposed, a versatile renderer that is intrinsically retargetable to various applications including the ones listed above, and demonstrates the effectiveness and simplicity of the approach on several applications that would be very challenging to create without assistance.
Abstract: Modern rendering systems are confronted with a dauntingly large and growing set of requirements: in their pursuit of realism, physically based techniques must increasingly account for intricate properties of light, such as its spectral composition or polarization. To reduce prohibitive rendering times, vectorized renderers exploit coherence via instruction-level parallelism on CPUs and GPUs. Differentiable rendering algorithms propagate derivatives through a simulation to optimize an objective function, e.g., to reconstruct a scene from reference images. Catering to such diverse use cases is challenging and has led to numerous purpose-built systems---partly, because retrofitting features of this complexity onto an existing renderer involves an error-prone and infeasibly intrusive transformation of elementary data structures, interfaces between components, and their implementations (in other words, everything). We propose Mitsuba 2, a versatile renderer that is intrinsically retargetable to various applications including the ones listed above. Mitsuba 2 is implemented in modern C++ and leverages template metaprogramming to replace types and instrument the control flow of components such as BSDFs, volumes, emitters, and rendering algorithms. At compile time, it automatically transforms arithmetic, data structures, and function dispatch, turning generic algorithms into a variety of efficient implementations without the tedium of manual redesign. Possible transformations include changing the representation of color, generating a "wide" renderer that operates on bundles of light paths, just-in-time compilation to create computational kernels that run on the GPU, and forward/reverse-mode automatic differentiation. Transformations can be chained, which further enriches the space of algorithms derived from a single generic implementation. We demonstrate the effectiveness and simplicity of our approach on several applications that would be very challenging to create without assistance: a rendering algorithm based on coherent MCMC exploration, a caustic design method for gradient-index optics, and a technique for reconstructing heterogeneous media in the presence of multiple scattering.

227 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: A parallax-attention mechanism with a global receptive field along the epipolar line to handle different stereo images with large disparity variations is introduced and a new and the largest dataset for stereo image SR is proposed.
Abstract: Stereo image pairs can be used to improve the performance of super-resolution (SR) since additional information is provided from a second viewpoint. However, it is challenging to incorporate this information for SR since disparities between stereo images vary significantly. In this paper, we propose a parallax-attention stereo superresolution network (PASSRnet) to integrate the information from a stereo image pair for SR. Specifically, we introduce a parallax-attention mechanism with a global receptive field along the epipolar line to handle different stereo images with large disparity variations. We also propose a new and the largest dataset for stereo image SR (namely, Flickr1024). Extensive experiments demonstrate that the parallax-attention mechanism can capture correspondence between stereo images to improve SR performance with a small computational and memory cost. Comparative results show that our PASSRnet achieves the state-of-the-art performance on the Middlebury, KITTI 2012 and KITTI 2015 datasets.

198 citations