scispace - formally typeset
Search or ask a question
Author

Daniel S. Levine

Bio: Daniel S. Levine is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Density functional theory & Chemical bond. The author has an hindex of 25, co-authored 48 publications receiving 1806 citations. Previous affiliations of Daniel S. Levine include University of Lyon & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: The Q-Chem quantum chemistry program package as discussed by the authors provides a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, and methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques.
Abstract: This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.

360 citations

Proceedings ArticleDOI
15 May 2007
TL;DR: In this paper, the authors present vehicle models and test flight results for an autonomous fixed-wing aircraft with the capability to take off, hover, transition to and from level flight, and perch on a vertical landing platform.
Abstract: This paper presents vehicle models and test flight results for an autonomous fixed-wing aircraft with the capability to take off, hover, transition to and from level-flight, and perch on a vertical landing platform. These maneuvers are all demonstrated in the highly space constrained environment of the Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) at MIT. RAVEN promotes the rapid prototyping of UAV planning and control technologies by allowing the use of unmodified commercially available model aircraft for autonomous flight. Experimental results of several hover tests, transition maneuvers, and perch landings are presented. By enabling a fixed-wing UAV to achieve these feats, we demonstrate that the desirable speed and range performance of an autonomous fixed-wing aircraft in level flight can be complimented by hover capabilities that are typically limited to rotary-wing vehicles. This combination has the potential to significantly ease support and maintenance of operational autonomous vehicles.

190 citations

Proceedings ArticleDOI
12 May 2009
TL;DR: The system architecture and core algorithms for a quadrotor helicopter that uses vision data to navigate an unknown, indoor, GPS-denied environment are described and drift-free hover and obstacle avoidance flight tests in a controlled environment are presented.
Abstract: This paper describes the system architecture and core algorithms for a quadrotor helicopter that uses vision data to navigate an unknown, indoor, GPS-denied environment. Without external sensing, an estimation system that relies only on integrating inertial data will have rapidly drifting position estimates. Micro aerial vehicles (MAVs) are stringently weight-constrained, leaving little margin for additional sensors beyond the mission payload. The approach taken in this paper is to introduce an architecture that exploits a common mission payload, namely a video camera, as a dual-use sensor to aid in navigation. Several core algorithms, including a fast environment mapper and a novel heuristic for obstacle avoidance, are also presented. Finally, drift-free hover and obstacle avoidance flight tests in a controlled environment are presented and analyzed.

172 citations

Journal ArticleDOI
TL;DR: This paper studies the global dynamics of neurons, or neuron populations, in a recurrent on-center off-surround anatomy undergoing nonlinear shunting interactions, and finds a mechanism for suppressing the activity of populations whose trigger features are infrequently experienced by the network.

162 citations

Proceedings ArticleDOI
02 May 2017
TL;DR: A concept of transformative appetite is developed, where edible 2D films made of common food materials can transform into 3D food during cooking, triggered by water adsorption, and it is strongly compatible with the 'flat packaging' concept for substantially reducing shipping costs and storage space.
Abstract: We developed a concept of transformative appetite, where edible 2D films made of common food materials (protein, cellulose or starch) can transform into 3D food during cooking. This transformation process is triggered by water adsorption, and it is strongly compatible with the 'flat packaging' concept for substantially reducing shipping costs and storage space. To develop these transformable foods, we performed material-based design, established a hybrid fabrication strategy, and conducted performance simulation. Users can customize food shape transformations through a pre-defined simulation platform, and then fabricate these designed patterns using additive manufacturing. Three application techniques are provided - 2D-to-3D folding, hydration-induced wrapping, and temperature-induced self-fragmentation, to present the shape, texture, and interaction with food materials. Based on this concept, several dishes were created in the kitchen, to demonstrate the futuristic dining experience through materials-based interaction design.

149 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A neural network architecture for the learning of recognition categories is derived which circumvents the noise, saturation, capacity, orthogonality, and linear predictability constraints that limit the codes which can be stably learned by alternative recognition models.
Abstract: A neural network architecture for the learning of recognition categories is derived. Real-time network dynamics are completely characterized through mathematical analysis and computer simulations. The architecture self-organizes and self-stabilizes its recognition codes in response to arbitrary orderings of arbitrarily many and arbitrarily complex binary input patterns. Top-down attentional and matching mechanisms are critical in self-stabilizing the code learning process. The architecture embodies a parallel search scheme which updates itself adaptively as the learning process unfolds. After learning self-stabilizes, the search process is automatically disengaged. Thereafter input patterns directly access their recognition codes without any search. Thus recognition time does not grow as a function of code complexity. A novel input pattern can directly access a category if it shares invariant properties with the set of familiar exemplars of that category. These invariant properties emerge in the form of learned critical feature patterns, or prototypes. The architecture possesses a context-sensitive self-scaling property which enables its emergent critical feature patterns to form. They detect and remember statistically predictive configurations of featural elements which are derived from the set of all input patterns that are ever experienced. Four types of attentional process—priming, gain control, vigilance, and intermodal competition—are mechanistically characterized. Top—down priming and gain control are needed for code matching and self-stabilization. Attentional vigilance determines how fine the learned categories will be. If vigilance increases due to an environmental disconfirmation, then the system automatically searches for and learns finer recognition categories. A new nonlinear matching law (the ⅔ Rule) and new nonlinear associative laws (the Weber Law Rule, the Associative Decay Rule, and the Template Learning Rule) are needed to achieve these properties. All the rules describe emergent properties of parallel network interactions. The architecture circumvents the noise, saturation, capacity, orthogonality, and linear predictability constraints that limit the codes which can be stably learned by alternative recognition models.

2,462 citations

Journal ArticleDOI
TL;DR: In this paper, a model for the parallel development and adult coding of neural feature detectors was proposed, where experience can retune feature detectors to respond to average features chosen from the set even if the average features have never been experienced.
Abstract: This paper analyses a model for the parallel development and adult coding of neural feature detectors. The model was introduced in Grossberg (1976). We show how experience can retune feature detectors to respond to a prescribed convex set of spatial patterns. In particular, the detectors automatically respond to average features chosen from the set even if the average features have never been experienced. Using this procedure, any set of arbitrary spatial patterns can be recoded, or transformed, into any other spatial patterns (universal recoding), if there are sufficiently many cells in the network's cortex. The network is built from short term memory (STM) and long term memory (LTM) mechanisms, including mechanisms of adaptation, filtering, contrast enhancement, tuning, and nonspecific arousal. These mechanisms capture some experimental properties of plasticity in the kitten visual cortex. The model also suggests a classification of adult feature detector properties in terms of a small number of functional principles. In particular, experiments on retinal dynamics, including amarcrine cell function, are suggested.

1,775 citations

Journal ArticleDOI
TL;DR: An historical discussion is provided of the intellectual trends that caused nineteenth century interdisciplinary studies of physics and psychobiology by leading scientists such as Helmholtz, Maxwell, and Mach to splinter into separate twentieth-century scientific movements.

1,586 citations