scispace - formally typeset
Search or ask a question
Author

Daniel Scherman

Bio: Daniel Scherman is an academic researcher from University of Paris. The author has contributed to research in topics: Gene delivery & Transfection. The author has an hindex of 54, co-authored 211 publications receiving 17186 citations. Previous affiliations of Daniel Scherman include Unitec Institute of Technology & Chimie ParisTech.


Papers
More filters
Journal ArticleDOI
TL;DR: Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices because its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysOSomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.
Abstract: Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

6,213 citations

Journal ArticleDOI
TL;DR: Very efficient plasmid DNA transfer in muscle fibers is reported by using square-wave electric pulses of low field strength and of long duration by suggesting a direct effect of the electric field on DNA during electrotransfer.
Abstract: Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. However, present DNA delivery technologies have to be improved with regard to both the level of expression and interindividual variability. We report very efficient plasmid DNA transfer in muscle fibers by using square-wave electric pulses of low field strength (less than 300 V/cm) and of long duration (more than 1 ms). Contrary to the electropermeabilization-induced uptake of small molecules into muscle fibers, plasmid DNA has to be present in the tissue during the electric pulses, suggesting a direct effect of the electric field on DNA during electrotransfer. This i.m. electrotransfer method increases reporter and therapeutic gene expression by several orders of magnitude in various muscles in mouse, rat, rabbit, and monkey. Moreover, i.m. electrotransfer strongly decreases variability. Stability of expression was observed for at least 9 months. With a pCMV-FGF1 plasmid coding for fibroblast growth factor 1, this protein was immunodetected in the majority of muscle fibers subjected to the electric pulses. DNA electrotransfer in muscle may have broad applications in gene therapy and in physiological, pharmacological, and developmental studies.

956 citations

Journal ArticleDOI
TL;DR: It is shown that IL-10-deficient C57BL/6J mice fed an atherogenic diet and raised under specific pathogen-free conditions exhibit a significant 3-fold increase in lipid accumulation compared with wild-type mice, which underscores the critical roles ofIL-10 in both atherosclerotic lesion formation and stability.
Abstract: The potential role of anti-inflammatory cytokines in the modulation of the atherosclerotic process remains unknown. Interleukin (IL)-10 has potent deactivating properties in macrophages and T cells and modulates many cellular processes that may interfere with the development and stability of the atherosclerotic plaque. IL-10 is expressed in human atherosclerosis and is associated with decreased signs of inflammation. In the present study, we show that IL-10-deficient C57BL/6J mice fed an atherogenic diet and raised under specific pathogen-free conditions exhibit a significant 3-fold increase in lipid accumulation compared with wild-type mice. Interestingly, the susceptibility of IL-10-deficient mice to atherosclerosis was exceedingly high (30-fold increase) when the mice were housed under conventional conditions. Atherosclerotic lesions of IL-10-deficient mice showed increased T-cell infiltration, abundant interferon-gamma expression, and decreased collagen content. In vivo, transfer of murine IL-10 achieved 60% reduction in lesion size. These results underscore the critical roles of IL-10 in both atherosclerotic lesion formation and stability. Moreover, IL-10 appears to be crucial as a protective factor against the effect of environmental pathogens on atherosclerosis.

826 citations

Journal ArticleDOI
TL;DR: A new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons are introduced, opening new perspectives for cell therapy research and for a variety of diagnosis applications.
Abstract: Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.

756 citations

Journal ArticleDOI
TL;DR: Using persistent luminescent nanoparticles suitable for small animal imaging, chemical modification of the nanoparticles' surface led to lung or liver targeting or to long-lasting blood circulation and tumor mass was identified on a mouse model.
Abstract: Fluorescence is increasingly used for in vivo imaging and has provided remarkable results. Yet this technique presents several limitations, especially due to tissue autofluorescence under external illumination and weak tissue penetration of low wavelength excitation light. We have developed an alternative optical imaging technique by using persistent luminescent nanoparticles suitable for small animal imaging. These nanoparticles can be excited before injection, and their in vivo distribution can be followed in real-time for more than 1 h without the need for any external illumination source. Chemical modification of the nanoparticles' surface led to lung or liver targeting or to long-lasting blood circulation. Tumor mass could also be identified on a mouse model.

722 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence is recounted that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree.
Abstract: ecent research has shown that inflammation plays a key role in coronary artery disease (CAD) and other manifestations of atherosclerosis. Immune cells dominate early atherosclerotic lesions, their effector molecules accelerate progression of the lesions, and activation of inflammation can elicit acute coronary syndromes. This review highlights the role of inflammation in the pathogenesis of atherosclerotic CAD. It will recount the evidence that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree. A decade ago, the treatment of hypercholesterolemia and hypertension was expected to eliminate CAD by the end of the 20th century. Lately, however, that optimistic prediction has needed revision. Cardiovascular diseases are expected to be the main cause of death globally within the next 15 years owing to a rapidly increasing prevalence in developing countries and eastern Europe and the rising incidence of obesity and diabetes in the Western world. 1 Cardiovascular diseases cause 38 percent of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. These facts force us to revisit cardiovascular disease and consider new strategies for prediction, prevention, and treatment.

7,551 citations

Journal ArticleDOI
TL;DR: The utility of polymeric micelles formed through the multimolecular assembly of block copolymers as novel core-shell typed colloidal carriers for drug and gene targeting and their feasibility as non-viral gene vectors is highlighted.

3,457 citations

Journal ArticleDOI
Ruth Duncan1
TL;DR: The successful clinical application of polymer–protein conjugates, and promising clinical results arising from trials with polymer–anticancer-drug conjugate, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.
Abstract: As we enter the twenty-first century, research at the interface of polymer chemistry and the biomedical sciences has given rise to the first nano-sized (5-100 nm) polymer-based pharmaceuticals, the 'polymer therapeutics'. Polymer therapeutics include rationally designed macromolecular drugs, polymer-drug and polymer-protein conjugates, polymeric micelles containing covalently bound drug, and polyplexes for DNA delivery. The successful clinical application of polymer-protein conjugates, and promising clinical results arising from trials with polymer-anticancer-drug conjugates, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.

3,184 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: Elevated levels of serum cholesterol are probably unique through the hepatic LDL receptor pathway, as evi-in being sufficient to drive the development of athero-denced by the fact that lack of functional LDL receptors sclerosis in humans and experimental animals, even in is responsible for the massive accumulation of LDL in the absence of other known risk factors.

2,995 citations

Journal ArticleDOI
TL;DR: An update on the progress of RNAi therapeutics is provided and novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids are highlighted.
Abstract: In the 10 years that have passed since the Nobel prize-winning discovery of RNA interference (RNAi), billions of dollars have been invested in the therapeutic application of gene silencing in humans. Today, there are promising data from ongoing clinical trials for the treatment of age-related macular degeneration and respiratory syncytial virus. Despite these early successes, however, the widespread use of RNAi therapeutics for disease prevention and treatment requires the development of clinically suitable, safe and effective drug delivery vehicles. Here, we provide an update on the progress of RNAi therapeutics and highlight novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids.

2,710 citations