scispace - formally typeset
Search or ask a question
Author

Daniel Shelver

Bio: Daniel Shelver is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Rhodospirillum rubrum & Heme. The author has an hindex of 9, co-authored 11 publications receiving 863 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The purification of wild-type CooA from its native organism, R. rubrum, to greater than 95% purity is reported, and a hypothesis for the mechanism of the protein's response to CO is proposed.
Abstract: Biological sensing of small molecules such as NO, O2, and CO is an important area of research; however, little is know about how CO is sensed biologically. The photosynthetic bacterium Rhodospirillum rubrum responds to CO by activating transcription of two operons that encode a CO-oxidizing system. A protein, CooA, has been identified as necessary for this response. CooA is a member of a family of transcriptional regulators similar to the cAMP receptor protein and fumavate nitrate reduction from Escherichia coli. In this study we report the purification of wild-type CooA from its native organism, R. rubrum, to greater than 95% purity. The purified protein is active in sequence-specific DNA binding in the presence of CO, but not in the absence of CO. Gel filtration experiments reveal the protein to be a dimer in the absence of CO. Purified CooA contains 1.6 mol heme per mol of dimer. Upon interacting with CO, the electronic spectrum of CooA is perturbed, indicating the direct binding of CO to the heme of CooA. A hypothesis for the mechanism of the protein’s response to CO is proposed.

185 citations

Journal ArticleDOI
TL;DR: In the photosynthetic bacterium Rhodospirillum rubrum, the presence of carbon monoxide (CO) induces expression of several proteins, such as CODH and CO-tolerant hydrogenase as mentioned in this paper.
Abstract: In the photosynthetic bacterium Rhodospirillum rubrum, the presence of carbon monoxide (CO) induces expression of several proteins. These include carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. Together these enzymes catalyze the following conversion: CO + H2O --> CO2 + H2. This system enables R. rubrum to grow in the dark on CO as the sole energy source. Expression of this system has been shown previously to be regulated at the transcriptional level by CO. We have now identified the remainder of the CO-regulated genes encoded in a contiguous region of the R. rubrum genome. These genes, cooMKLXU, apparently encode proteins related to the function of the CO-induced hydrogenase. As seen before with the gene for the large subunit of the CO-induced hydrogenase (cooH), most of the proteins predicted by these additional genes show significant sequence similarity to subunits of Escherichia coli hydrogenase 3. In addition, all of the newly identified coo gene products show similarity to subunits of NADH-quinone oxidoreductase (energy-conserving NADH dehydrogenase I) from various eukaryotic and prokaryotic organisms. We have found that dicyclohexylcarbodiimide, an inhibitor of mitochondrial NADH dehydrogenase I (also called complex I), inhibits the CO-induced hydrogenase as well. We also show that expression of the cooMKLXUH operon is regulated by CO and the transcriptional activator CooA in a manner similar to that of the cooFSCTJ operon that encodes the subunits of CODH and related proteins.

184 citations

Journal ArticleDOI
TL;DR: The identification of a gene that is required for CO-induced gene expression is described, and a model based on this observation is proposed for the recognition of CO by Cooa.
Abstract: Induction of the CO-oxidizing system of the photosynthetic bacterium Rhodospirillum rubrum is regulated at the level of gene expression by the presence of CO. In this paper, we describe the identification of a gene that is required for CO-induced gene expression. An 11-kb deletion of the region adjacent to the previously characterized cooFSCTJ region resulted in a mutant unable to synthesize CO dehydrogenase in response to CO and unable to grow utilizing CO as an energy source. A 2.5-kb region that corresponded to a portion of the deleted region complemented this mutant for its CO regulation defect, restoring its ability to grow utilizing CO as an energy source. When the 2.5-kb region was sequenced, one open reading frame, designated cooA, predicted a product showing similarity to members of the cyclic AMP receptor protein (CRP) family of transcriptional regulators. The product, CooA, is 28% identical (51% similar) to CRP and 18% identical (45% similar) to FNR from Escherichia coli. The insertion of a drug resistance cassette into cooA resulted in a mutant that could not grow utilizing CO as an energy source. CooA contains a number of cysteine residues substituted at, or adjacent to, positions that correspond to residues that contact cyclic AMP in the crystal structure of CRP. A model based on this observation is proposed for the recognition of CO by Cooa. Adjacent to cooA are two genes, nadB and nadC, with predicted products similar to proteins in other bacteria that catalyze reactions in the de novo synthesis of NAD.(ABSTRACT TRUNCATED AT 250 WORDS)

98 citations

Journal ArticleDOI
TL;DR: Electronic absorption and EPR analysis of various substitutions at Cys residues establish that Cys75 is a heme ligand in FeIII CooA, however, characterization of heme stability and electronic properties of purified C75S CoeA suggest that CYS75 is not a ligands in FeII CoaA.
Abstract: The CO-sensing mechanism of the transcription factor CooA from Rhodospirillum rubrum was studied through a systematic mutational analysis of potential heme ligands. Previous electron paramagnetic resonance (EPR) spectroscopic studies on wild-type CooA suggested that oxidized (FeIII) CooA contains a low-spin heme with a thiolate ligand, presumably a cysteine, bound to its heme iron. In the present report, electronic absorption and EPR analysis of various substitutions at Cys residues establish that Cys75 is a heme ligand in FeIII CooA. However, characterization of heme stability and electronic properties of purified C75S CooA suggest that Cys75 is not a ligand in FeII CooA. Mutational analysis of all CooA His residues showed that His77 is critical for CO-stimulated transcription. On the basis of findings that H77Y CooA is perturbed in its FeII electronic properties and is unable to bind DNA in a site-specific manner in response to CO, His77 appears to be an axial ligand to FeII CooA. These results imply a ...

92 citations

Journal ArticleDOI
TL;DR: In vivo analysis in a heterologous background indicates that CooA is sufficient for CO-dependent expression, implicating it as the likely CO sensor.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations

Journal ArticleDOI
TL;DR: Compelling evidence from sequences and structures indicates that the [NiFe]- and [Fe]-H2ases are phylogenetically distinct classes of proteins, which would be consistent with the phylogenetic distinctiveness of the two classes of H2ases.
Abstract: Hydrogenases (H2ases) catalyze the reversible oxidation of molecular hydrogen and play a central role in microbial energy metabolism. Most of these enzymes are found in Archaea and Bacteria, but a few are present in Eucarya as well. They can be distributed into three classes: the [Fe]-H2ases, the [NiFe]-H2ases, and the metal-free H2ases. The vast majority of known H2ases belong to the first two classes, and over 100 of these enzymes have been characterized genetically and/or biochemically. Compelling evidence from sequences and structures indicates that the [NiFe]- and [Fe]-H2ases are phylogenetically distinct classes of proteins. The catalytic core of the [NiFe]-H2ases is a heterodimeric protein, although additional subunits are present in many of these enzymes. Functional classes of [NiFe]-H2ases have been defined, and they are consistent with categories defined by sequence similarity of the catalytic subunits. The catalytic core of the [Fe]-H2ases is a ca. 350-residue domain that accommodates the active site (H-cluster). A few monomeric [Fe]-H2ases are barely larger than the H-cluster domain. Many others are monomeric as well, but possess additional domains that contain redox centers, mostly iron–sulfur. Some [Fe]-H2ases are oligomeric. The modular structure of H2ases is strikingly illustrated in recently unveiled sequences and structures. It is also remarkable that most of the accessory domains and subunits of H2ases have counterparts in other redox complexes, in particular NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. Microbial genome sequences are bringing forth a significant body of additional H2ase sequence data and contribute to the understanding of H2ase distribution and evolution. Altogether, the available data suggest that [Fe]-H2ases are restricted to Bacteria and Eucarya, while [NiFe]-H2ases, with one possible exception, seem to be present only in Archaea and Bacteria. H2ase processing and maturation involve the products of several genes which have been identified and are currently being characterized in the case of the [NiFe]-H2ases. In contrast, near to nothing is known regarding the maturation of the [Fe]-H2ases. Inspection of the currently available genome sequences suggests that the [NiFe]-H2ase maturation proteins have no similar counterparts in the genomes of organisms possessing [Fe]-H2ases only. This observation, if confirmed, would be consistent with the phylogenetic distinctiveness of the two classes of H2ases. Sequence alignments of catalytic subunits of H2ases have been implemented to construct phylogenetic trees that were found to be consistent, in the main, with trees derived from other data. On the basis of the comparisons performed and discussed here, proposals are made to simplify and rationalize the nomenclature of H2ase-encoding genes.

1,087 citations

Journal ArticleDOI
TL;DR: The latest progress on the biochemistry and genetics of the energy metabolism of model acetogens are discussed, elucidating how these bacteria couple CO2 fixation to energy conservation.
Abstract: Life on earth evolved in the absence of oxygen with inorganic gases as potential sources of carbon and energy. Among the alternative mechanisms for carbon dioxide (CO₂) fixation in the living world, only the reduction of CO₂ by the Wood-Ljungdahl pathway, which is used by acetogenic bacteria, complies with the two requirements to sustain life: conservation of energy and production of biomass. However, how energy is conserved in acetogenic bacteria has been an enigma since their discovery. In this Review, we discuss the latest progress on the biochemistry and genetics of the energy metabolism of model acetogens, elucidating how these bacteria couple CO₂ fixation to energy conservation.

590 citations

Journal ArticleDOI
TL;DR: The majority of signal transduction systems consist of a single protein that contains input and output domains but lacks phosphotransfer domains typical of two-component systems.

506 citations