scispace - formally typeset
Search or ask a question
Author

Daniel T. Monaghan

Bio: Daniel T. Monaghan is an academic researcher from University of California, Irvine. The author has contributed to research in topics: NMDA receptor & Glutamate receptor. The author has an hindex of 27, co-authored 32 publications receiving 8231 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: 'The following abbreviations have been used in the text'; I3-N-uxalyl-L-a,l3diaminu-prupiunic acid; ACPD, Trans-l-aminu-cydupentyl-I,3-dicarbuxylate; AMPA, a­ aminU-3-hydruxy-5-methyl-isoxazole-4-propionate; AP4, 2-
Abstract: 'The following abbreviations have been used in the text; I3-L-ODAP, I3-N-uxalyl-L-a,l3diaminu-prupiunic acid; ACPD, Trans-l-aminu-cydupentyl-I,3-dicarbuxylate; AMPA, a­ aminu-3-hydruxy-5-methyl-isoxazole-4-propionate; AP4, 2-amino-4-phosphonobutyrate; AP5, 2-amino-5-phuphonovalerate; ASP, aspartate; CNQX, 6-cyano-7-nitro-quinoxaline-2,3-dione; CPP, 3-(2-earboxypiperazin-4-yl)prupyl-l -phosphate; cyelo-Leu, eydo-Ieucine; DAA, D-a­ amino-adipate; DGG, y-D-glutamylglycine; DNQX, 6,7-dinitro-quinoxaline-2,3dione; EAA, excitatory amino acids; GABA, gamma-aminu-butyric acid; GDEE, glutamate diethyl ester; GLU, glutamate; GL Y, glycine; HA-966, 3-amino-l-hydroxypyrrolidone-2; lBO, ibotenate; IP, inositol phosphate; KA, kainate; KYN, kynurenate; MK-801, dibenzoeyclohepteneimine; NMDA, N-methyl-D-aspartate; PCP, phencyclidine; QA, quisqualate; SER, serine; SOP, serine­ O-phosphate; TCP, 1-[1-(2-thienyl)-eyclohexyIJpiperidine

2,226 citations

Journal ArticleDOI
TL;DR: The distribution of NMDA-sensitive L-[3H]glutamate-binding sites suggests that the NMDA receptor represents a major, distinct subset of excitatory amino acid receptors and indicates regions in which neurotransmission may be mediated or modulated by this receptor.
Abstract: N-methyl-D-aspartate (NMDA) is an acidic amino acid which depolarizes neurons by selectively interacting with a distinct class of excitatory amino acid receptor. Recent evidence has indicated that this receptor is a neurotransmitter receptor in the spinal cord, cerebral cortex, and hippocampus for which the endogenous ligand is likely to be L-glutamate or a structurally related compound. Using quantitative autoradiography, we have studied the anatomical distribution of the class of L- [3H]glutamate-binding sites displaced by NMDA, which appear to correspond to NMDA receptors. The CA1 region of the hippocampus contains the highest density of sites. In general, telencephalic regions have high levels of binding sites. The cerebral cortex shows significant density variations among the differing layers and regions, with the highest levels found in the frontal cortex layers I to III. Within the basal ganglia, the highest levels are found in the nucleus accumbens, intermediate levels are found in the caudate/putamen, and very low levels are found in the globus pallidus. Thalamic regions have moderate levels with variations among differing regions. Midbrain and brainstem have low levels of binding sites, but within these regions there are structures exhibiting higher levels, e.g., the nucleus of the solitary tract and the inferior olive. The distribution of NMDA sites is consistent with most, but not all, of the regions previously proposed to use glutamate as an excitatory transmitter. Thus, the distribution of NMDA-sensitive L-[3H]glutamate-binding sites suggests that the NMDA receptor represents a major, distinct subset of excitatory amino acid receptors and indicates regions in which neurotransmission may be mediated or modulated by this receptor.

1,307 citations

Journal ArticleDOI
TL;DR: Evidence obtained with presynaptic markers indicates that EAA are major transmitters of corticocortical, corticofugal, and sensory systems and this anatomical map appears to correspond to the distribution of the sum of the receptors.

790 citations

Journal ArticleDOI
10 Nov 1983-Nature
TL;DR: There are at least four distinct classes of 3H-L-glutamate binding sites which differ in their anatomical distribution, pharmacological profile and regulation by ions, and a third site may represent the KA receptor and a fourth binding site does not conform to present receptor classifications.
Abstract: Glutamate is thought to serve as a major excitatory neurotrans-mitter throughout the central nervous system (CNS)1,2; electrophysiological studies indicate that its action is mediated by multiple receptors. Four receptors have been characterized by their selective sensitivity to N-methyl-D-aspartate (NMDA), kainic acid (KA), quisqualic acid (QA) and 2-amino-4-phosphonobutyric acid (APB)1,3–5. Electrophysiological evidence indicates that these receptors are all present in the rat hippocampus and that the anatomically discrete synaptic fields within the hippocampus exhibit differential sensitivity to the selective excitatory amino acid agents3,6,7. Thus, we have used the hippocampus as a model system to investigate possible subpopulations of 3H-L-glutamate binding sites. By using quantitative autoradiography, the pharmacological specificity of 3H-L-glutamate binding in discrete terminal fields was determined. We report here that there are at least four distinct classes of 3H-L-glutamate binding sites which differ in their anatomical distribution, pharmacological profile and regulation by ions. Two of these sites seem to correspond to the KA and NMDA receptor classes, and a third site may represent the QA receptor. The fourth binding site does not conform to present receptor classifications. None of these binding sites corresponds to the major glutamate binding site observed in biochemical studies8–12.

524 citations

Journal ArticleDOI
TL;DR: The distribution of [3H]kainic acid binding sites in the rat CNS was determined by in vitro autoradiography and suggest that KA binding sites are associated with select terminal fields, and hence may be involved in neurotransmission in certain CNS pathways.

492 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 1988-Neuron

4,979 citations

Journal ArticleDOI
TL;DR: The application of molecular cloning technology to the study of the glutamate receptor system has led to an explosion of knowledge about the structure, expression, and function of this most important fast excitatory transmitter system in the mammalian brain.
Abstract: The application of molecular cloning technology to the study of the glutamate receptor system has led to an explosion of knowledge about the structure, expression, and function of this most important fast excitatory transmitter system in the mammalian brain. The first functional ionotropic glutamate receptor was cloned in 1989 (Hollmann et al 1989) , and the results of this molecular-based approach over the past three years are the focus of this review. We discuss the implications of and the new questions raised by this work-which is probably only a glance at this fascinating and complex signaling system found in brains from the snails to man. Glutamate receptors are found throughout the mammalian brain, where they constitute the major excitatory transmitter system. The longest-known and best-studied glutamate receptors are ligand-gated ion channels, also called ionotropic glutamate receptors , which are permeable to cations. They have traditionally been classified into three broad subtypes based upon pharmaco­ logical and electrophysiological data: a-amino-3-hydroxy-5-methyl-4isoxazole propionate (AMPA) receptors, kainate (KA) receptors , and N-methyl-D-aspartate (NMDA) receptors. Recently, however, a family of G protein-coupled glutamate receptors , which are also called metabotropic glutamate or transl -aminocyclopentanel ,3-dicarboxylate (tACPD) recep­ tors, was identified (Sugiyama et al 1987) . (For reviews of the classification and the pharmacological and electrophysiological properties of glutamate receptors see Mayer & Westbrook 1987, Collingridge & Lester 1989, Honore 1989, Monaghan et al 1989, Wroblewski & Danysz 1 989, Hansen &

4,079 citations

Journal ArticleDOI
TL;DR: This review discusses International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Abstract: The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.

3,044 citations

Journal ArticleDOI
23 Oct 1992-Science
TL;DR: The molecular and functional diversity of the glutamate receptors is reviewed and their implications for integrative brain function are discussed.
Abstract: The glutamate receptors mediate excitatory neurotransmission in the brain and are important in memory acquisition, learning, and some neurodegenerative disorders. This receptor family is classified in three groups: the N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-kainate, and metabotropic receptors. Recent molecular studies have shown that many receptor subtypes exist in all three groups of the receptors and exhibit heterogeneity in function and expression patterns. This article reviews the molecular and functional diversity of the glutamate receptors and discusses their implications for integrative brain function.

2,588 citations

Journal ArticleDOI
22 May 1992-Science
TL;DR: Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% ientical in sequence, and these are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor sub Units.
Abstract: The N-methyl d-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% ientical in sequence These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1) Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate-and NMDA-activated currents only when they were in heteromeric configurations with NR1 NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution

2,578 citations