scispace - formally typeset
Search or ask a question
Author

Daniel Vatanabe Pazinato

Bio: Daniel Vatanabe Pazinato is an academic researcher from State University of Campinas. The author has contributed to research in topics: Feature extraction & Statistical classification. The author has an hindex of 3, co-authored 4 publications receiving 142 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed Open-Set NN (OSNN) method incorporates the ability of recognizing samples belonging to classes that are unknown at training time, being suitable for open-set recognition.
Abstract: In this paper, we propose a novel multiclass classifier for the open-set recognition scenario. This scenario is the one in which there are no a priori training samples for some classes that might appear during testing. Usually, many applications are inherently open set. Consequently, successful closed-set solutions in the literature are not always suitable for real-world recognition problems. The proposed open-set classifier extends upon the Nearest-Neighbor (NN) classifier. Nearest neighbors are simple, parameter independent, multiclass, and widely used for closed-set problems. The proposed Open-Set NN (OSNN) method incorporates the ability of recognizing samples belonging to classes that are unknown at training time, being suitable for open-set recognition. In addition, we explore evaluation measures for open-set problems, properly measuring the resilience of methods to unknown classes during testing. For validation, we consider large freely-available benchmarks with different open-set recognition regimes and demonstrate that the proposed OSNN significantly outperforms their counterparts in the literature.

192 citations

Journal ArticleDOI
TL;DR: The classification accuracy obtained by the proposed method with the novel descriptor in the ultrasound tissue images is significantly above the accuracy of the state-of-the-art threshold-based methods, showing it is a robust ally for the virtual histology in ultrasound images.
Abstract: Background: Pixel-level tissue classification for ultrasound images, commonly applied to carotid images, is usually based on defining thresholds for the isolated pixel values. Ranges of pixel values are defined for the classification of each tissue. The classification of pixels is then used to determine the carotid plaque composition and, consequently, to determine the risk of diseases (e.g., strokes) and whether or not a surgery is necessary. The use of threshold-based methods dates from the early 2000s but it is still widely used for virtual histology . Methodology/Principal Findings: We propose the use of descriptors that take into account information about a neighborhood of a pixel when classifying it. We evaluated experimentally different descriptors (statistical moments, texture-based, gradient-based, local binary patterns, etc.) on a dataset of five types of tissues: blood, lipids, muscle, fibrous, and calcium. The pipeline of the proposed classification method is based on image normalization, multiscale feature extraction, including the proposal of a new descriptor, and machine learning classification. We have also analyzed the correlation between the proposed pixel classification method in the ultrasound images and the real histology with the aid of medical specialists. Conclusions/Significance: The classification accuracy obtained by the proposed method with the novel descriptor in the ultrasound tissue images (around 73%) is significantly above the accuracy of the state-of-the-art threshold-based methods (around 54%). The results are validated by statistical tests. The correlation between the virtual and real histology confirms the quality of the proposed approach showing it is a robust ally for the virtual histology in ultrasound images.

32 citations

Journal ArticleDOI
TL;DR: The results show that the approach is effective and efficient for the target problem, making it suitable for use in real-time setups and an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study.

16 citations

Journal ArticleDOI
TL;DR: This work proposes the use of similarity measures and learning-to-rank methods (LRAR) in the implementation of the recommendation service, and shows that Jaro–Winkler yields the highest effectiveness performance with comparable results to those observed for LRAR.

2 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey of existing open set recognition techniques covering various aspects ranging from related definitions, representations of models, datasets, evaluation criteria, and algorithm comparisons to highlight the limitations of existing approaches and point out some promising subsequent research directions.
Abstract: In real-world recognition/classification tasks, limited by various objective factors, it is usually difficult to collect training samples to exhaust all classes when training a recognizer or classifier. A more realistic scenario is open set recognition (OSR), where incomplete knowledge of the world exists at training time, and unknown classes can be submitted to an algorithm during testing, requiring the classifiers to not only accurately classify the seen classes, but also effectively deal with unseen ones. This paper provides a comprehensive survey of existing open set recognition techniques covering various aspects ranging from related definitions, representations of models, datasets, evaluation criteria, and algorithm comparisons. Furthermore, we briefly analyze the relationships between OSR and its related tasks including zero-shot, one-shot (few-shot) recognition/learning techniques, classification with reject option, and so forth. Additionally, we also review the open world recognition which can be seen as a natural extension of OSR. Importantly, we highlight the limitations of existing approaches and point out some promising subsequent research directions in this field.

492 citations

Journal ArticleDOI
21 Mar 2018
TL;DR: A machine-learning technique is used to teach a computer to recognize different types of video and still images produced by echocardiogram tests, and it is shown that the model could correctly classify what heart anatomy was shown in videos with 98% accuracy.
Abstract: Echocardiography is essential to cardiology. However, the need for human interpretation has limited echocardiography's full potential for precision medicine. Deep learning is an emerging tool for analyzing images but has not yet been widely applied to echocardiograms, partly due to their complex multi-view format. The essential first step toward comprehensive computer-assisted echocardiographic interpretation is determining whether computers can learn to recognize these views. We trained a convolutional neural network to simultaneously classify 15 standard views (12 video, 3 still), based on labeled still images and videos from 267 transthoracic echocardiograms that captured a range of real-world clinical variation. Our model classified among 12 video views with 97.8% overall test accuracy without overfitting. Even on single low-resolution images, accuracy among 15 views was 91.7% vs. 70.2-84.0% for board-certified echocardiographers. Data visualization experiments showed that the model recognizes similarities among related views and classifies using clinically relevant image features. Our results provide a foundation for artificial intelligence-assisted echocardiographic interpretation.

334 citations

Proceedings ArticleDOI
Hong Liu1, Zhangjie Cao1, Mingsheng Long1, Jianmin Wang1, Qiang Yang 
15 Jun 2019
TL;DR: The approach adopts a coarse-to-fine weighting mechanism to progressively separate the samples of unknown and known classes, and simultaneously weigh their importance on feature distribution alignment, which allows openness-robust open set domain adaptation, which can be adaptive to a variety of openness in the target domain.
Abstract: Domain adaptation has become a resounding success in leveraging labeled data from a source domain to learn an accurate classifier for an unlabeled target domain. When deployed in the wild, the target domain usually contains unknown classes that are not observed in the source domain. Such setting is termed Open Set Domain Adaptation (OSDA). While several methods have been proposed to address OSDA, none of them takes into account the openness of the target domain, which is measured by the proportion of unknown classes in all target classes. Openness is a critical point in open set domain adaptation and exerts a significant impact on performance. In addition, current work aligns the entire target domain with the source domain without excluding unknown samples, which may give rise to negative transfer due to the mismatch between unknown and known classes. To this end, this paper presents Separate to Adapt (STA), an end-to-end approach to open set domain adaptation. The approach adopts a coarse-to-fine weighting mechanism to progressively separate the samples of unknown and known classes, and simultaneously weigh their importance on feature distribution alignment. Our approach allows openness-robust open set domain adaptation, which can be adaptive to a variety of openness in the target domain. We evaluate STA on several benchmark datasets of various openness levels. Results verify that STA significantly outperforms previous methods.

199 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: In this article, a Classification-Reconstruction Learning for Open-Set Recognition (CROSR) method was proposed, which utilizes latent representations for reconstruction and enables robust unknown detection without harming the known class classification accuracy.
Abstract: Open-set classification is a problem of handling ‘unknown’ classes that are not contained in the training dataset, whereas traditional classifiers assume that only known classes appear in the test environment. Existing open-set classifiers rely on deep networks trained in a supervised manner on known classes in the training set; this causes specialization of learned representations to known classes and makes it hard to distinguish unknowns from knowns. In contrast, we train networks for joint classification and reconstruction of input data. This enhances the learned representation so as to preserve information useful for separating unknowns from knowns, as well as to discriminate classes of knowns. Our novel Classification-Reconstruction learning for Open-Set Recognition (CROSR) utilizes latent representations for reconstruction and enables robust unknown detection without harming the known-class classification accuracy. Extensive experiments reveal that the proposed method outperforms existing deep open-set classifiers in multiple standard datasets and is robust to diverse outliers.

162 citations