scispace - formally typeset
Search or ask a question
Author

Daniel Visentin

Bio: Daniel Visentin is an academic researcher. The author has contributed to research in topics: Genome & DNA sequencing. The author has an hindex of 5, co-authored 5 publications receiving 1192 citations.
Topics: Genome, DNA sequencing, Noncoding DNA, Gene, Enhancer

Papers
More filters
Journal ArticleDOI
TL;DR: A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
Abstract: The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.

1,665 citations

Journal ArticleDOI
TL;DR: This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients to provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.
Abstract: There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases. Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet”) age-related macular degeneration (wet AMD) and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye) and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves). Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges. This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients. Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

36 citations

Posted ContentDOI
08 Apr 2021-bioRxiv
TL;DR: In this article, a new deep learning architecture called Enformer is proposed to integrate long-range interactions (up to 100 kb away) in the genome, which can be used to predict gene expression prediction from DNA sequence.
Abstract: The next phase of genome biology research requires understanding how DNA sequence encodes phenotypes, from the molecular to organismal levels. How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequence through the use of a new deep learning architecture called Enformer that is able to integrate long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Notably, Enformer outperformed the best team on the critical assessment of genome interpretation (CAGI5) challenge for noncoding variant interpretation with no additional training. Furthermore, Enformer learned to predict promoter-enhancer interactions directly from DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of growing human disease associations to cell-type-specific gene regulatory mechanisms and provide a framework to interpret cis-regulatory evolution. To foster these downstream applications, we have made the pre-trained Enformer model openly available, and provide pre-computed effect predictions for all common variants in the 1000 Genomes dataset. One-sentence summary Improved noncoding variant effect prediction and candidate enhancer prioritization from a more accurate sequence to expression model driven by extended long-range interaction modelling.

20 citations

Journal ArticleDOI
TL;DR: In this article, a deep learning architecture called Enformer was proposed to predict enhancer-promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input.
Abstract: How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution. By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence.

9 citations


Cited by
More filters
Journal ArticleDOI
Eric J. Topol1
TL;DR: Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient–doctor relationship or facilitate its erosion remains to be seen.
Abstract: The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.

2,574 citations

Journal ArticleDOI
TL;DR: nnU-Net as mentioned in this paper is a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task.
Abstract: Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

2,040 citations

Journal ArticleDOI
TL;DR: How these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems are described.
Abstract: Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.

1,843 citations

Journal ArticleDOI
TL;DR: A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
Abstract: The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.

1,665 citations

Journal ArticleDOI
01 Jan 2020-Nature
TL;DR: A robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening and using a combination of AI and human inputs could help to improve screening efficiency.
Abstract: Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful1. Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives2. Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening. An artificial intelligence (AI) system performs as well as or better than radiologists at detecting breast cancer from mammograms, and using a combination of AI and human inputs could help to improve screening efficiency.

1,413 citations