scispace - formally typeset
Search or ask a question
Author

Daniel Vlasic

Bio: Daniel Vlasic is an academic researcher from Google. The author has contributed to research in topics: Optical flow & Dynamic data. The author has an hindex of 20, co-authored 39 publications receiving 3044 citations. Previous affiliations of Daniel Vlasic include Mitsubishi Electric Research Laboratories & Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI
01 Jul 2005
TL;DR: Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another, based on a multilinear model of 3D face meshes that separably parameterizes the space of geometric variations due to different attributes.
Abstract: Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage These parameters are then used to generate and drive a detailed 3D textured face mesh for a target identity, which can be seamlessly rendered back into target footage The underlying face model automatically adjusts for how the target performs facial expressions and visemes The performance data can be easily edited to change the visemes, expressions, pose, or even the identity of the target---the attributes are separably controllable This supports a wide variety of video rewrite and puppetry applicationsFace Transfer is based on a multilinear model of 3D face meshes that separably parameterizes the space of geometric variations due to different attributes (eg, identity, expression, and viseme) Separability means that each of these attributes can be independently varied A multilinear model can be estimated from a Cartesian product of examples (identities × expressions × visemes) with techniques from statistical analysis, but only after careful preprocessing of the geometric data set to secure one-to-one correspondence, to minimize cross-coupling artifacts, and to fill in any missing examples Face Transfer offers new solutions to these problems and links the estimated model with a face-tracking algorithm to extract pose, expression, and viseme parameters

679 citations

Journal ArticleDOI
01 Aug 2008
TL;DR: This work demonstrates a practical software system for capturing details in mesh animations from multi-view video recordings given a stream of synchronized video images that record a human performance from multiple viewpoints and an articulated template of the performer.
Abstract: Details in mesh animations are difficult to generate but they have great impact on visual quality. In this work, we demonstrate a practical software system for capturing such details from multi-view video recordings. Given a stream of synchronized video images that record a human performance from multiple viewpoints and an articulated template of the performer, our system captures the motion of both the skeleton and the shape. The output mesh animation is enhanced with the details observed in the image silhouettes. For example, a performance in casual loose-fitting clothes will generate mesh animations with flowing garment motions. We accomplish this with a fast pose tracking method followed by nonrigid deformation of the template to fit the silhouettes. The entire process takes less than sixteen seconds per frame and requires no markers or texture cues. Captured meshes are in full correspondence making them readily usable for editing operations including texturing, deformation transfer, and deformation model learning.

633 citations

Proceedings ArticleDOI
29 Jul 2007
TL;DR: Experimental results show that even motions that are traditionally difficult to acquire are recorded with ease within their natural settings, and suggest that this system could become a versatile input device for a variety of augmented-reality applications.
Abstract: Commercial motion-capture systems produce excellent in-studio reconstructions, but offer no comparable solution for acquisition in everyday environments. We present a system for acquiring motions almost anywhere. This wearable system gathers ultrasonic time-of-flight and inertial measurements with a set of inexpensive miniature sensors worn on the garment. After recording, the information is combined using an Extended Kalman Filter to reconstruct joint configurations of a body. Experimental results show that even motions that are traditionally difficult to acquire are recorded with ease within their natural settings. Although our prototype does not reliably recover the global transformation, we show that the resulting motions are visually similar to the original ones, and that the combined acoustic and intertial system reduces the drift commonly observed in purely inertial systems. Our final results suggest that this system could become a versatile input device for a variety of augmented-reality applications.

352 citations

Journal ArticleDOI
01 Dec 2009
TL;DR: In this article, a system for high-resolution capture of moving 3D geometry is described, where dynamic normal maps from multiple views are captured using active shape-from-shading (photometric stereo), with a large lighting dome providing a series of novel spherical lighting configurations.
Abstract: We describe a system for high-resolution capture of moving 3D geometry, beginning with dynamic normal maps from multiple views. The normal maps are captured using active shape-from-shading (photometric stereo), with a large lighting dome providing a series of novel spherical lighting configurations. To compensate for low-frequency deformation, we perform multi-view matching and thin-plate spline deformation on the initial surfaces obtained by integrating the normal maps. Next, the corrected meshes are merged into a single mesh using a volumetric method. The final output is a set of meshes, which were impossible to produce with previous methods. The meshes exhibit details on the order of a few millimeters, and represent the performance over human-size working volumes at a temporal resolution of 60Hz.

290 citations

Proceedings ArticleDOI
15 Jun 2018
TL;DR: In this paper, a method for training a regression network from image pixels to 3D morphable model coordinates using only unlabeled photographs is presented. But the training loss is based on features from a facial recognition network, computed on-the-fly by rendering the predicted faces with a differentiable renderer.
Abstract: We present a method for training a regression network from image pixels to 3D morphable model coordinates using only unlabeled photographs. The training loss is based on features from a facial recognition network, computed on-the-fly by rendering the predicted faces with a differentiable renderer. To make training from features feasible and avoid network fooling effects, we introduce three objectives: a batch distribution loss that encourages the output distribution to match the distribution of the morphable model, a loopback loss that ensures the network can correctly reinterpret its own output, and a multi-view identity loss that compares the features of the predicted 3D face and the input photograph from multiple viewing angles. We train a regression network using these objectives, a set of unlabeled photographs, and the morphable model itself, and demonstrate state-of-the-art results.

261 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey provides an overview of higher-order tensor decompositions, their applications, and available software.
Abstract: This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or $N$-way array. Decompositions of higher-order tensors (i.e., $N$-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.

9,227 citations

Posted Content
TL;DR: This work describes how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrates results that outperform prior work on neural rendering and view synthesis.
Abstract: We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (non-convolutional) deep network, whose input is a single continuous 5D coordinate (spatial location $(x,y,z)$ and viewing direction $(\theta, \phi)$) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.

2,435 citations

Proceedings ArticleDOI
16 Oct 2011
TL;DR: Novel extensions to the core GPU pipeline demonstrate object segmentation and user interaction directly in front of the sensor, without degrading camera tracking or reconstruction, to enable real-time multi-touch interactions anywhere.
Abstract: KinectFusion enables a user holding and moving a standard Kinect camera to rapidly create detailed 3D reconstructions of an indoor scene. Only the depth data from Kinect is used to track the 3D pose of the sensor and reconstruct, geometrically precise, 3D models of the physical scene in real-time. The capabilities of KinectFusion, as well as the novel GPU-based pipeline are described in full. Uses of the core system for low-cost handheld scanning, and geometry-aware augmented reality and physics-based interactions are shown. Novel extensions to the core GPU pipeline demonstrate object segmentation and user interaction directly in front of the sensor, without degrading camera tracking or reconstruction. These extensions are used to enable real-time multi-touch interactions anywhere, allowing any planar or non-planar reconstructed physical surface to be appropriated for touch.

2,373 citations

Journal ArticleDOI
TL;DR: A new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, is introduced for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms.
Abstract: We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m .

2,209 citations

Proceedings Article
01 Jan 1999

2,010 citations