scispace - formally typeset
Search or ask a question
Author

Daniela Perani

Bio: Daniela Perani is an academic researcher from Vita-Salute San Raffaele University. The author has contributed to research in topics: Dementia & Dementia with Lewy bodies. The author has an hindex of 88, co-authored 350 publications receiving 30491 citations. Previous affiliations of Daniela Perani include University of Milan & University of Milano-Bicocca.


Papers
More filters
Journal ArticleDOI
01 Feb 1990-Brain
TL;DR: The results suggest diminished neuronal firing or decreased dendritic synaptic density with age, as well as a strict coupling between CMRO2 and CBF, and between CBF and CBV was found, while OER was constant and independent ofCBF andCMRO2.
Abstract: Regional cerebral blood flow (CBF), oxygen extraction ratio (OER), oxygen utilization (CMRO2) and blood volume (CBV) were measured in a group of 34 healthy volunteers (age range 22–82 yrs) using the 15O steady-state inhalation method and positron emission tomography. Between subjects CBF correlated positively with CMRO2, although the interindividual variability of the measured values was large. OER was not dependent on CMRO2, but highly negatively correlated with CBF. CBV correlated positively with CBF. When considering the values of all the regions of interest within a single subject, a strict coupling between CMRO2 and CBF, and between CBF and CBV was found, while OER was constant and independent of CBF and CMRO2. In ‘pure’ grey and white matter regions CMRO2, CBF and CBV decreased with age approximately 0.50% per year. In other regions the decline was less evident, most likely due to partial volume effects. OER did not change or showed a slight increase with age (maximum in the grey matter region 0.35%/yr). The results suggest diminished neuronal firing or decreased dendritic synaptic density with age.

1,038 citations

Journal ArticleDOI
TL;DR: For example, this paper found that grasp observation significantly activates the cortex of the middle temporal gyrus including that of the adjacent superior temporal sulcus and the caudal part of the left inferior frontal gyrus.
Abstract: Positron emission tomography (PET) was used to localize brain regions that are active during the observation of grasping movements. Normal, right-handed subjects were tested under three conditions. In the first, they observed grasping movements of common objects performed by the experimenter. In the second, they reached and grasped the same objects. These two conditions were compared with a third condition consisting of object observation. On the basis of monkey data, it was hypothesized that during grasping observation, activations should be present in the region of the superior temporal sulcus (STS) and in inferior area 6. The findings in humans demonstrated that grasp observation significantly activates the cortex of the middle temporal gyrus including that of the adjacent superior temporal sulcus (Brodmann's area 21) and the caudal part of the left inferior frontal gyrus (Brodmann's area 45). The possible functional homologies between these areas and the monkey STS region and frontal area F5 are discussed.

1,017 citations

Journal ArticleDOI
TL;DR: The results showed that listening to action-related sentences activates a left fronto-parieto-temporal network that includes the pars opercularis of the inferior frontal gyrus (Broca's area), as well as the inferior parietal lobule, the intraparietal sulcus, and the posterior middle temporal gyrus.
Abstract: Observing actions made by others activates the cortical circuits responsible for the planning and execution of those same actions This observation–execution matching system (mirror-neuron system) is thought to play an important role in the understanding of actions made by others In an fMRI experiment, we tested whether this system also becomes active during the processing of action-related sentences Participants listened to sentences describing actions performed with the mouth, the hand, or the leg Abstract sentences of comparable syntactic structure were used as control stimuli The results showed that listening to action-related sentences activates a left fronto-parieto-temporal network that includes the pars opercularis of the inferior frontal gyrus (Broca's area), those sectors of the premotor cortex where the actions described are motorically coded, as well as the inferior parietal lobule, the intraparietal sulcus, and the posterior middle temporal gyrus These data provide the first direct evidence that listening to sentences that describe actions engages the visuomotor circuits which subserve action execution and observation

986 citations

Journal ArticleDOI
13 Oct 1994-Nature
TL;DR: Brain activity was mapped in normal subjects during passive obser-vation of the movements of an 'alien' hand and while imagining grasping objects with their own hand to support the notion that motor learning during observation of movements and mental practice involves rehearsal of neural pathways related to cognitive stages of motor control.
Abstract: Brain activity was mapped in normal subjects during passive observation of the movements of an 'alien' hand and while imagining grasping objects with their own hand. None of the tasks required actual movement. Shifting from one mental task to the other greatly changed the pattern of brain activation. During observation of hand movements, activation was mainly found in visual cortical areas, but also in subcortical areas involved in motor behaviour, such as the basal ganglia and the cerebellum. During motor imagery, cortical and subcortical areas related to motor preparation and programming were strongly activated. These data support the notion that motor learning during observation of movements and mental practice involves rehearsal of neural pathways related to cognitive stages of motor control.

955 citations

Journal ArticleDOI
01 Oct 1997-Brain
TL;DR: The pattern of brain activation during observation of actions is dependent both on the nature of the required executive processing and the type of the extrinsic properties of the action presented.
Abstract: PET was used to map brain regions that are associated with the observation of meaningful and meaningless hand actions. Subjects were scanned under four conditions which consisted of visually presented actions. In each of the four experimental conditions, they were instructed to watch the actions with one of two aims: to be able to recognize or to imitate them later. We found that differences in the meaning of the action, irrespective of the strategy used during observation, lead to different patterns of brain activity and clear left/right asymmetries. Meaningful actions strongly engaged the left hemisphere in frontal and temporal regions while meaningless actions involved mainly the right occipitoparietal pathway. Observing with the intent to recognize activated memory-encoding structures. In contrast, observation with the intent to imitate was associated with activation in the regions involved in the planning and in the generation of actions. Thus, the pattern of brain activation during observation of actions is dependent both on the nature of the required executive processing and the type of the extrinsic properties of the action presented.

938 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations

Journal ArticleDOI
TL;DR: Illustration de trois fonctions principales qui sont predominantes dans l'etude de l'intervention de l'sattention dans les processus cognitifs: 1) orientation vers des evenements sensoriels; 2) detection des signaux par processus focal; 3) maintenir la vigilance en etat d'alerte
Abstract: : The concept of attention as central to human performance extends back to the start of experimental psychology, yet even a few years ago, it would not have been possible to outline in even a preliminary form a functional anatomy of the human attentional system. New developments in neuroscience have opened the study of higher cognition to physiological analysis, and have revealed a system of anatomical areas that appear to be basic to the selection of information for focal (conscious) processing. The importance of attention is its unique role in connecting the mental level of description of processes used in cognitive science with the anatomical level common in neuroscience. Sperry describes the central role that mental concepts play in understanding brain function. As is the case for sensory and motor systems of the brain, our knowledge of the anatomy of attention is incomplete. Nevertheless, we can now begin to identify some principles of organization that allow attention to function as a unified system for the control of mental processing. Although many of our points are still speculative and controversial, we believe they constitute a basis for more detailed studies of attention from a cognitive-neuroscience viewpoint. Perhaps even more important for furthering future studies, multiple methods of mental chronometry, brain lesions, electrophysiology, and several types of neuro-imaging have converged on common findings.

7,237 citations