scispace - formally typeset
Search or ask a question
Author

Daniele Dominici

Bio: Daniele Dominici is an academic researcher from University of Florence. The author has contributed to research in topics: Electroweak interaction & Higgs boson. The author has an hindex of 35, co-authored 175 publications receiving 5066 citations. Previous affiliations of Daniele Dominici include Istituto Nazionale di Fisica Nucleare & University of Camerino.


Papers
More filters
Posted Content
TL;DR: The TESLA Technical Design Report Part III: Physics at an e+e-linear Collider as mentioned in this paper, Part III, Section 3, Section 2.1, Section 4.
Abstract: The TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

567 citations

Journal ArticleDOI
Georg Weiglein1, Sami Lehti2, Geneviève Bélanger, Tao Han3, David L. Rainwater4, Massimiliano Chiorboli5, Michael Ratz, M. Schumacher6, P. Niezurawski7, Stefano Moretti8, Filip Moortgat9, S. J. Asztalos10, Rohini M. Godbole11, Abdelhak Djouadi12, G. Polesello9, Werner Porod13, Werner Porod14, A.A. Giolo-Nicollerat15, Alessia Tricomi5, J.L. Hewett16, M. Szleper17, L. Zivkovic18, Stephen Godfrey19, Maria Krawczyk7, Klaus Desch20, Alexander Sherstnev21, Dimitri Bourilkov22, A. G. Akeroyd, Dirk Zerwas, M. Muhlleitner23, T. Binoth24, Maria Spiropulu9, Alexander Nikitenko25, A. Krokhotine, V. Bunichev21, Tadas Krupovnickas26, Peter Wienemann, T. Hurth9, T. Hurth16, A. De Roeck9, S. De Curtis27, Ritva Kinnunen2, D. Grellscheid28, U. Baur29, J. Kalinowski7, Gudrid Moortgat-Pick9, Gudrid Moortgat-Pick1, H. U. Martyn30, Alexander Pukhov21, C. Hugonie14, U. Ellwanger, Daniel Tovey31, Aleksander Filip Zarnecki7, Thomas G. Rizzo16, S. Slabospitsky, Jonathan L. Feng32, Remi Lafaye33, Sally Dawson34, Diaz23, Philip Bechtle20, I.F. Ginzburg, Hooman Davoudiasl, Andreas Redelbach24, J. Jiang35, W. J. Stirling1, Reinhold Rückl24, Per Osland36, S. Weinzierl37, Fernando Quevedo38, Laura Reina26, Timothy Barklow16, H. J. Schreiber, Andre Sopczak39, Wilfried Buchmuller, Howard E. Haber40, H. Pas24, E. Lytken41, Xerxes Tata, Howard Baer26, Tsutomu T. Yanagida42, Sabine Kraml43, Sabine Kraml9, Mayda Velasco17, Francois Richard, E. K. U. Gross6, A.F. Osorio44, J. Guasch23, Fawzi Boudjema, Stewart Boogert45, Sven Heinemeyer9, Sabine Riemann, D. Asner18, Daniele Dominici27, Victoria Jane Martin46, J.F. Gunion47, Marco Battaglia48, Michael Spira23, Doreen Wackeroth29, David J. Miller49, David J. Miller46, Joan Sola50, J. Gronberg10, Zack Sullivan, A. Juste, Lynne H. Orr4, Wolfgang Hollik51, Heather E. Logan3, Benjamin C. Allanach38, Junji Hisano42, Carlos E. M. Wagner52, Carlos E. M. Wagner35, Frank F. Deppisch24, Tilman Plehn9, F. Gianotti9, Gianluca Cerminara53, G.A. Blair54, Wolfgang Kilian, Michael Dittmar15, E. E. Boos21, Kiyotomo Kawagoe55, Alexander Belyaev26, Koichi Hamaguchi, Børge Kile Gjelsten56, Tim M. P. Tait, Klaus Mönig, Edmond L. Berger35, P.M. Zerwas, Mihoko M. Nojiri57 
Durham University1, University of Helsinki2, University of Wisconsin-Madison3, University of Rochester4, University of Catania5, Weizmann Institute of Science6, University of Warsaw7, University of Southampton8, CERN9, Lawrence Livermore National Laboratory10, Indian Institute of Science11, University of Montpellier12, University of Zurich13, Spanish National Research Council14, ETH Zurich15, Stanford University16, Northwestern University17, University of Pittsburgh18, Carleton University19, University of Hamburg20, Moscow State University21, University of Florida22, Paul Scherrer Institute23, University of Würzburg24, Imperial College London25, Florida State University26, University of Florence27, University of Bonn28, University at Buffalo29, RWTH Aachen University30, University of Sheffield31, University of California, Irvine32, Laboratoire d'Annecy-le-Vieux de physique des particules33, Brookhaven National Laboratory34, Argonne National Laboratory35, University of Bergen36, University of Mainz37, Centers for Medicare and Medicaid Services38, Lancaster University39, University of California, Santa Cruz40, University of Copenhagen41, University of Tokyo42, Austrian Academy of Sciences43, University of Manchester44, University College London45, University of Edinburgh46, University of California, Davis47, University of California, Berkeley48, University of Glasgow49, University of Barcelona50, Max Planck Society51, University of Chicago52, University of Turin53, Royal Holloway, University of London54, Kobe University55, University of Oslo56, Kyoto University57
TL;DR: In this paper, the authors discuss the possible interplay between the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.

422 citations

Journal ArticleDOI
Georg Weiglein, Timothy Barklow, E. E. Boos, A. De Roeck, Klaus Kurt Desch, F. Gianotti, Rohini M. Godbole, J.F. Gunion, Howard E. Haber, S. Heinemeyer, J.L. Hewett, Kiyotomo Kawagoe, Klaus Mönig, Mihoko M. Nojiri, G. Polesello, Francois Richard, Sabine Riemann, W. J. Stirling, A. G. Akeroyd, Benjamin C. Allanach, D. M. Asner, S. J. Asztalos, Howard Baer, M. Battaglia, U. Baur, Philip Bechtle, Geneviève Bélanger, Alexander Belyaev, Edmond L. Berger, T. Binoth, G.A. Blair, Stewart Boogert, Fawzi Boudjema, Dimitri Bourilkov, Wilfried Buchmuller, V. Bunichev, Gianluca Cerminara, Massimiliano Chiorboli, Hooman Davoudiasl, Sally Dawson, S. De Curtis, Frank F. Deppisch, Marco Aurelio Diaz, Michael Dittmar, Abdelhak Djouadi, Daniele Dominici, U. Ellwanger, Jonathan L. Feng, I.F. Ginzburg, A. S. Giolo-Nicollerat, Børge Kile Gjelsten, Stephen Godfrey, David Grellscheid, J. Gronberg, Eugene P. Gross, J. Guasch, Koichi Hamaguchi, Tao Han, Junji Hisano, Wolfgang Hollik, Cyril Hugonie, Tobias Hurth, J. Jiang, A. Juste, J. Kalinowski, Wolfgang Kilian, Ritva Kinnunen, Sabine Kraml, Maria Krawczyk, A. Krokhotine, T. Krupovnickas, Remi Lafaye, Sami Lehti, Heather E. Logan, Else Lytken, Victoria Jane Martin, H.U. Martyn, David J. Miller, Stefano Moretti, F. Moortgat, Gudrid Moortgat-Pick, M. Muhlleitner, P. Niezurawski, Alexander Nikitenko, Lynne H. Orr, Per Osland, A.F. Osorio, H. Pas, Tilman Plehn, Werner Porod, Alexander Pukhov, Fernando Quevedo, D. Rainwater, Michael Ratz, Andreas Redelbach, Laura Reina, Tom Rizzo, Reinhold Rückl, H. J. Schreiber, Markus Schumacher, Alexander Sherstnev, S. Slabospitsky, Joan Sola, Andre Sopczak, Michael Spira, Maria Spiropulu, Zack Sullivan, Michal Szleper, Tim M. P. Tait, Xerxes Tata, Daniel Tovey, Alessia Tricomi, Mayda Velasco, Doreen Wackeroth, Carlos E. M. Wagner, S. Weinzierl, Peter Wienemann, Tsutomu T. Yanagida, Aleksander Filip Zarnecki, Dirk Zerwas, P.M. Zerwas, L. Zivkovic 
TL;DR: In this article, the authors address the possible interplay between the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.
Abstract: Physics at the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC / LC Study Group so far is summarised in this report. Possible topics for future studies are outlined.

334 citations

Journal ArticleDOI
TL;DR: In this article, spontaneous symmetry breaking of global supersymmetry for a single scalar superfield in an arbitrary Kahler manifold is discussed, where the curvature of the manifold goes to infinity (or equivalently the masses of the scalar partners of the goldstino go to infinity).

250 citations

Journal ArticleDOI
Elena Accomando1, Attilio Andreazza2, H. Anlauf3, Alessandro Ballestrero1, Timothy Barklow4, J. Bartels5, A. Bartl6, Marco Battaglia7, W. Beenakker8, Geneviève Bélanger, W. Bernreuther9, J. Biebel, J. Binnewies5, Johannes Blümlein, E. E. Boos10, F. Borzumati11, Fawzi Boudjema, A. Brandenburg9, P. J. Bussey12, Matteo Cacciari, Roberto Casalbuoni13, A. Corsetti14, S. De Curtis15, F. Cuypers16, G. Daskalakis, Aldo Deandrea17, Ansgar Denner16, M. Diehl18, S. Dittmaier7, Abdelhak Djouadi19, Daniele Dominici13, Herbert K. Dreiner20, Helmut Eberl, Ulrich Ellwanger21, R. Engel22, K. Flöttmann, H. Franz9, T. Gajdosik6, Raoul Gatto23, H. Genten9, Rohini M. Godbole24, G. Gounaris25, Mario Greco15, Jean-Francois Grivaz21, D. Guetta, D. Haidt, Robert V. Harlander26, H.J. He, W. Hollik26, Katri Huitu27, P. Igo-Kemenes28, V. A. Ilyin10, Patrick Janot7, Fred Jegerlehner, M. Jezabek29, B. Jim, J. Kalinowski30, W. Kilian28, B.R. Kim9, T. Kleinwort5, Bernd A. Kniehl31, Michael Kramer20, Gustav Kramer5, Sabine Kraml, A. Krause, Maria Krawczyk30, Alexander Kryukov10, Jens H. Kuhn26, Aristotelis Kyriakis, A. Leike32, H. Lotter5, Jukka Maalampi27, W. Majerotto, C. Markou, M. I. Martínez33, U. Martyn9, Barbara Mele34, D. J. Miller35, Ramon Miquel36, A. Nippe9, H. Nowak, Thorsten Ohl3, Per Osland37, P. Overmann28, G. Pancheri15, A. A. Pankov38, Costas G. Papadopoulos, N. Paver38, A. Pietila, M. Peter26, M. Pizzio1, Tilman Plehn, M. Pohl, N. Polonsky39, W. Porod6, Alexander Pukhov10, Martti Raidal40, Sabine Riemann, Tord Riemann, K. Riesselmann, I. Riu33, A. De Roeck, Janusz Rosiek30, Reinhold Rückl41, H. J. Schreiber, Daniel Schulte, R. Settles31, Rezo Shanidze, S. Shichanin, E. Simopoulou, Torbjörn Sjöstrand42, J. G. Smith, Andre Sopczak, Hubert Spiesberger, Thomas Teubner43, C. Troncon2, C. Vander Velde, Andreas Vogt41, R. Vuopionper27, Alexander Wagner, J. Ward35, Max Weber9, B. H. Wiik, G. W. Wilson, P.M. Zerwas 
TL;DR: The physics potential of linear linear colliders has been discussed in this paper, where the authors describe the potential for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the super-ymmetric partners of the electroweak gauge and Higgs bosons.

250 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The Pythia program as mentioned in this paper can be used to generate high-energy-physics ''events'' (i.e. sets of outgoing particles produced in the interactions between two incoming particles).
Abstract: The Pythia program can be used to generate high-energy-physics ''events'', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.

6,300 citations

Journal ArticleDOI
TL;DR: In this article, theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model are discussed and a careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP.

2,395 citations

Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

2,286 citations

Journal ArticleDOI
TL;DR: The ALPGEN as discussed by the authors event generator performs the calculation of exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data.
Abstract: This paper presents a new event generator, ALPGEN, dedicated to the study of multiparton hard processes in hadronic collisions. The code performs, at the leading order in QCD and EW interactions, the calculation of the exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data. The current version of the code describes the following final states: (W→f')Q+N jets (Q being a heavy quark, and f = l,q), with N ≤ 4;(Z/γ*→f)Q+N jets (f = l,ν), with N ≤ 4; W→f')+charm+N jets (f = l,q,N ≤ 5;W→f')+N jets (f = l,q and Z/γ*→f)+N jets (f = l,ν), with N ≤ 6; nW+mZ+lH+N jets, with n+m+l+N ≤ 8, N ≤ 3, including all 2-fermion decay modes of W and Z bosons, with spin correlations; Q+N jets, with t→bf' decays and relative spin correlations included where relevant, and N ≤ 6; QQ''+N jets, with Q and Q' heavy quarks (possibly equal) and N ≤ 4; HQ+N jets, with t→bf' decays and relative spin correlations included where relevant and N ≤ 4; N jets, with N ≤ 6. Parton-level events are generated, providing full information on their colour and flavour structure, enabling the evolution of the partons into fully hadronised final states.

1,828 citations