scispace - formally typeset
Search or ask a question
Author

Danielle Dussossoy

Bio: Danielle Dussossoy is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Cannabinoid receptor type 2 & Immune receptor. The author has an hindex of 7, co-authored 7 publications receiving 2125 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that CB1 and CB2 can be considered as tissue-selective antigens of the central nervous system and immune system, respectively, and cannabinoids may exert specific receptor-mediated actions on the immune system through the CB2 receptor.
Abstract: Two proteins with seven transmembrane-spanning domains typical of guanosine-nucleotide-binding-protein-coupled receptors have been identified as cannabinoid receptors; the central cannabinoid receptor, CB1, and the peripheral cannabinoid receptor, CB2, initially described in rat brain and spleen, respectively. Here, we report the distribution patterns for both CB1 and CB2 transcripts in human immune cells and in several human tissues, as analysed using a highly sensitive and quantitative PCR-based method. CB1 was mainly expressed in the central nervous system and, to a lower extent, in several peripheral tissues such as adrenal gland, heart, lung, prostate, uterus, ovary, testis, bone marrow, thymus and tonsils. In contrast, the CB2 gene, which is not expressed in the brain, was particularly abundant in immune tissues, with an expression level 10-100-fold higher than that of CB1. Although CB2 mRNA was also detected in some other peripheral tissues, its level remained very low. In spleen and tonsils, the CB2 mRNA content was equivalent to that of CB1 mRNA in the central nervous system. Among the main human blood cell subpopulations, the distribution pattern of the CB2 mRNA displayed important variations. The rank order of CB2 mRNA levels in these cells was B-cells > natural killer cells >> monocytes > polymorphonuclear neutrophil cells > T8 cells > T4 cells. The same rank order was also established in human cell lines belonging to the myeloid, monocytic and lymphoid lineages. The prevailing expression of the CB2 gene in immune tissues was confirmed by Northern-blot analysis. In addition, the expression of the CB2 protein was demonstrated by an immunohistological analysis performed on tonsil sections using specific anti-(human CB2) IgG; this experiment showed that CB2 expression was restricted to B-lymphocyte-enriched areas of the mantle of secondary lymphoid follicles. These results suggest that (a) CB1 and CB2 can be considered as tissue-selective antigens of the central nervous system and immune system, respectively, and (b) cannabinoids may exert specific receptor-mediated actions on the immune system through the CB2 receptor.

1,646 citations

Journal ArticleDOI
15 Apr 1996-Blood
TL;DR: A strong correlation was established between the ability of hematopoietic cell lines to resist H202 cytotoxicity and their level of PBR expression, suggesting that PBR may prevent mitochondria from radical damages and thereby modulate apoptosis in the hematopolietic system.

197 citations

Journal ArticleDOI
15 Nov 1998-Blood
TL;DR: Theexpression of CB2 receptors in leukocytes using anti-CB2 receptor immunopurified polyclonal antibodies and the effect of the cannabinoid agonist CP55,940 on the CD40-mediated proliferation of both virgin and GC B-cell subsets strongly support an involvement ofCB2 receptors during B- cell differentiation.

174 citations

Journal ArticleDOI
TL;DR: It is shown that CB2 is constitutively active, phosphorylated, and internalized at the basal level, and inverse agonist SR 144528 treatment completely inhibited this phosphorylation state, leading to an up-regulated CB2 receptor level at the cell surface, and enhanced cannabinoid agonist sensitivity for mitogen-activated protein kinase activation of Chinese hamster ovary-CB2 cells.

108 citations

Journal ArticleDOI
TL;DR: Results suggest that both SR31747A-binding proteins not only play a role in sterol metabolism but indirectly affect lipoprotein functions.
Abstract: SR31747A is a sigma ligand previously described as having original immunosuppressive properties. Two SR31747A targets were recently identified and termed sigma1 or SR-BP-1 (SR31747A-binding protein-1) and hSI (human sterol isomerase). In order to characterize these proteins further, we examined their expression and localization at the subcellular level. Based on the amino acid sequence deduced from the cloned hSI, anti-hSI polyclonal antibody was raised against the N-terminal fragment of the protein. Using this antibody, we performed Western-blot experiments to demonstrate the presence of hSI in various B and T cell lines, and hSI expression was quantified in these cell lines by flow cytometry and estimated at 15 000–30 000 sites per cell. Subcellular localization studies by both confocal and electron microscopy, performed on THP1 cells with anti-hSI antibody and with the previously described anti-(SR-BP-1) monoclonal antibody, demonstrated that: (a) hSI was colocalized with SR-BP-1; (b) hSI and SR-BP-1 were associated with the endoplasmic reticulum and with the outer and inner membranes of the nuclear envelope; (c) both proteins were delocalized during the cell cycle at the mitosis step when the nuclear membranes disappeared. Taken together our results suggest that both SR31747A-binding proteins not only play a role in sterol metabolism but indirectly affect lipoprotein functions.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is considered premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification, because pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging and other kinds of supporting evidence are still lacking.
Abstract: Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show marked selectivity for one or the other receptor type. Cannabinoid receptors CB(1) and CB(2) exhibit 48% amino acid sequence identity. Both receptor types are coupled through G proteins to adenylyl cyclase and mitogen-activated protein kinase. CB(1) receptors are also coupled through G proteins to several types of calcium and potassium channels. These receptors exist primarily on central and peripheral neurons, one of their functions being to inhibit neurotransmitter release. Indeed, endogenous CB(1) agonists probably serve as retrograde synaptic messengers. CB(2) receptors are present mainly on immune cells. Such cells also express CB(1) receptors, albeit to a lesser extent, with both receptor types exerting a broad spectrum of immune effects that includes modulation of cytokine release. Of several endogenous agonists for cannabinoid receptors identified thus far, the most notable are arachidonoylethanolamide, 2-arachidonoylglycerol, and 2-arachidonylglyceryl ether. It is unclear whether these eicosanoid molecules are the only, or primary, endogenous agonists. Hence, we consider it premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Although pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging, other kinds of supporting evidence are still lacking.

2,619 citations

Journal ArticleDOI
TL;DR: The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from mitochondria.
Abstract: Both physiological cell death (apoptosis) and, in some cases, accidental cell death (necrosis) involve a two-step process. At a first level, numerous physiological and some pathological stimuli trigger an increase in mitochondrial membrane permeability. The mitochondria release apoptogenic factors through the outer membrane and dissipate the electrochemical gradient of the inner membrane. Mitochondrial permeability transition (PT) involves a dynamic multiprotein complex formed in the contact site between the inner and outer mitochondrial membranes. The PT complex can function as a sensor for stress and damage, as well as for certain signals connected to receptors. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 prevents cell death, suggesting that PT is a rate-limiting event of the death process. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial inner transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) entails a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation of specific apoptogenic proteases (caspases) by mitochondrial proteins that leak into the cytosol (cytochrome c, apoptosis-inducing factor) with secondary endonuclease activation (apoptosis). The relative rate of these two processes (bioenergetic catastrophe versus protease and endonuclease activation) determines whether a cell will undergo primary necrosis or apoptosis. The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from mitochondria. The fact that mitochondrial events control cell death has major implications for the development of cytoprotective and cytotoxic drugs.

2,034 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy is provided.
Abstract: The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson9s and Huntington9s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB 1 receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB 1 receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB 2 receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients9 need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.

1,857 citations

Journal ArticleDOI
TL;DR: The mechanism of action of Bcl-2 provides clues for therapeutic interventions and could help in the development of new drugs to treat central nervous system disorders.
Abstract: The mechanism of action of Bcl-2 provides clues for therapeutic interventions

1,684 citations

Journal ArticleDOI
TL;DR: The synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation, and the fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release.
Abstract: Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.

1,511 citations