scispace - formally typeset
Search or ask a question
Author

Danielle Le Rhun

Bio: Danielle Le Rhun is an academic researcher from ANSES. The author has contributed to research in topics: Bartonella & Bartonella Infection. The author has an hindex of 10, co-authored 15 publications receiving 615 citations. Previous affiliations of Danielle Le Rhun include Jilin University & Institut national de la recherche agronomique.

Papers
More filters
Journal ArticleDOI
TL;DR: The causative agent of cat-scratch disease in humans can be transmitted by this tick through saliva.
Abstract: Bartonella spp. are facultative intracellular bacteria associated with several emerging diseases in humans and animals. B. henselae causes cat-scratch disease and is increasingly associated with several other syndromes, particularly ocular infections and endocarditis. Cats are the main reservoir for B. henselae and the bacteria are transmitted to cats by cat fleas. However, new potential vectors are suspected of transmitting B. henselae, in particular, Ixodes ricinus, the most abundant ixodid tick that bites humans in western Europe. We used a membrane-feeding technique to infect I. ricinus with B. henselae and demonstrate transmission of B. henselae within I. ricinus across developmental stages, migration or multiplication of B. henselae in salivary glands after a second meal, and transmission of viable and infective B. henselae from ticks to blood. These results provide evidence that I. ricinus is a competent vector for B. henselae.

224 citations

Journal ArticleDOI
TL;DR: Results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp.
Abstract: Bartonella spp. are facultative intracellular vector-borne bacteria associated with several emerging diseases in humans and animals all over the world. The potential for involvement of ticks in transmission of Bartonella spp. has been heartily debated for many years. However, most of the data supporting bartonellae transmission by ticks come from molecular and serological epidemiological surveys in humans and animals providing only indirect evidences without a direct proof of tick vector competence for transmission of bartonellae. We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii. Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse. The nymphs successfully transmitted B. birtlesii to naive mice as bacteria were recovered from both the mouse blood and liver at seven and 16 days after tick bites. The female adults successfully emitted the bacteria into uninfected blood after three or more days of tick attachment, when fed via membrane feeding system. Histochemical staining showed the presence of bacteria in salivary glands and muscle tissues of partially engorged adult ticks, which had molted from the infected nymphs. These results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp. transmission by ticks. Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.

131 citations

Journal ArticleDOI
TL;DR: It is shown that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.
Abstract: Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.

107 citations

Journal ArticleDOI
TL;DR: The genus Bartonella comprises a unique group of emerging gram‐negative, intracellular bacteria that can cause a long‐lasting intraerythrocytic bacteremia in their reservoir hosts.
Abstract: The genus Bartonella comprises a unique group of emerging gram-negative, intracellular bacteria that can cause a long-lasting intraerythrocytic bacteremia in their reservoir hosts. In recent years, the widespread occurrence and diversity of these bacteria has been increasingly recognized. This has resulted in a dramatic expansion of the genus Bartonella to 24 currently described species or subspecies, among which at least half have been associated with human disease. Bartonella infections have been observed in virtually all species examined, extending from humans to carnivores, ungulates, rodents, lagomorphs, insectivores, and bats. Adaptation by Bartonellae to such a diverse range of mammals has resulted in host specificity, and all validated Bartonella species described to date are capable of parasitizing only a limited number of animal species. In this review, the possible mechanisms explaining the specificity of each Bartonella species for its reservoir host are discussed.

49 citations

Journal ArticleDOI
TL;DR: Recording and combining the results of these and other approaches can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.
Abstract: Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.

42 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps, with particular focus on AcrAB-TolC and Mex pumps.
Abstract: The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.

1,016 citations

Journal ArticleDOI
TL;DR: Nanoparticles can overcome existing drug resistance mechanisms, including decreased uptake and increased efflux of drug from the microbial cell, biofilm formation, and intracellular bacteria, and target antimicrobial agents to the site of infection, thereby overcoming resistance.

992 citations

Journal ArticleDOI
TL;DR: Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Abstract: Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.

388 citations

Journal ArticleDOI
TL;DR: Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures.
Abstract: SUMMARY Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.

386 citations