scispace - formally typeset
Search or ask a question
Author

Danilo Davyt

Bio: Danilo Davyt is an academic researcher from University of the Republic. The author has contributed to research in topics: Oxazole & Thiazole. The author has an hindex of 10, co-authored 27 publications receiving 549 citations.
Topics: Oxazole, Thiazole, Click chemistry, Chemistry, Moiety

Papers
More filters
Journal ArticleDOI
TL;DR: The isolation, synthetic, and biological studies of thiazoles, oxazole and their corresponding reduced derivatives, thiazolines and oxazolines, covering literature from January 2007 to June 2010 are summarized.
Abstract: Thiazoles, oxazole and their corresponding reduced derivatives, thiazolines and oxazolines, are found in marine sources exhibiting significant biological activities. The isolation, synthetic, and biological studies of these natural products, covering literature from January 2007 to June 2010, are summarized.

149 citations

Journal ArticleDOI
TL;DR: Chondriamide C (3), a new bis(indole) amide, was isolated from the red alga Chondria atropurpurea, and its structure was established from spectroscopic data and chemical transformations.
Abstract: Chondriamide C (3), a new bis(indole) amide, was isolated from the red alga Chondria atropurpurea, and its structure was established from spectroscopic data and chemical transformations. A new natural product, 3-indoleacrylamide (4), and the previously described chondriamides A and B (1, 2) and 3-indoleacrylic acid (5) were also isolated. The anthelmintic activities of compounds 1, 3, 4, and 6 (the O,N1,N1‘-trimethyl derivative of compound 2) against Nippostrongylus brasiliensis in vitro were evaluated.

91 citations

Journal ArticleDOI
TL;DR: Ten sesquiterpenes and one long chain aldehyde have been isolated from the dichloromethane extract of the red alga Laurencia scoparia and four of them are new natural products.
Abstract: Eleven sesquiterpenes (1-11) and one long chain aldehyde (12) have been isolated from the dichloromethane extract of the red alga Laurencia scoparia. Four of them are new natural products. Scopariol (1) is a new natural product with an unusual rearranged chamigrane-type structure. The other three are beta-chamigrenes: isorigidol (2), (+)-3-(Z)-bromomethylidene-10 beta-bromo-beta-chamigrene (3), and (-)-3-(E)-bromomethylidene-10 beta-bromo-beta-chamigrene (4). The in vitro activity of compounds 1-12 against the parasitant stage of Nippostrongylus brasiliensis (L4) has been studied.

90 citations

Journal ArticleDOI
TL;DR: These are the first structurally described siderophores produced by endophytic bacteria, named serobactin A, B and C, which vary by the length of the fatty acid chain.
Abstract: Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria.

61 citations

Journal ArticleDOI
TL;DR: Single-crystal X-ray crystallography allowed us to confirm the structure of 1 as well as to determine the absolute configuration of all stereocenters, and showed weak in vitro anthelmintic activity against parasitant stage Nippostrongilus brasiliensis.
Abstract: Three novel halogenated beta-bisabolene sesquiterpenoids (1-3), together with two know triquinane alcohol sesquiterpenes (6 and 7), were isolated from the red alga Laurencia scoparia and their structures elucidated by spectroscopic methods. Single-crystal X-ray crystallography allowed us to confirm the structure of 1 as well as to determine the absolute configuration of all stereocenters. To the best of our knowledge, the isolation of beta-bisabolenes from the genus Laurencia has no precedent in the literature. Compound 1 showed weak in vitro anthelmintic activity against parasitant stage (L4) Nippostrongilus brasiliensis.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: This review addresses the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Abstract: All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

1,677 citations

Journal ArticleDOI
TL;DR: Information is provided on current and potential pharmaceuticals including small molecule natural indole alkaloids to their biological properties, structure-activity relationship studies, and especially their potential for the treatment of neurological disorders, including depression.
Abstract: The marine environment has been explored in the search for new bioactive compounds over the last 50 years, becoming a highly important and rich source of potent molecules and drug leads reported to possess a wide scope of activities. Alkaloids constitute one of the largest classes of natural products and are synthesized by terrestrial and marine organisms on all evolutionary levels. Alkaloids are usually present in an organism as a mixture consisting of several major and a few minor compounds of the same biosynthetic origin and differing only in functional groups. This group of compounds has apparently evolved as a defense mechanism against predators and as a result alkaloids are often highly potent and toxic molecules.1 Marine invertebrates have proven to be an outstanding source of active molecules, one of the most promising being indole alkaloids. Although many of these marine alkaloids closely resemble the endogenous amines (serotonin, dopamine or histamine), their potential affinity to various neurological targets and consequential impact on animal behavior is virtually unexplored. Indole alkaloids, their activity, synthesis and potential use in medicine have been already reviewed in several articles.2 In this review we provide information on current and potential pharmaceuticals including small molecule natural indole alkaloids, their biological properties, structure-activity relationship studies, and especially their potential for the treatment of neurological disorders. 1.1. The indole moiety in drugs The indole moiety is present in a number of drugs currently on the market. Most of these belong to triptans which are used mainly in the treatment of migraine headaches (Fig. 1). All members of this group are agonists of migraine associated 5HT1B and 5HT1D serotonin receptors. Sumatriptan (Imitrex) was developed by Glaxo for the treatment of migraines and introduced into the market as the first member of the triptan family.3 Relative to the second generation triptans, sumatriptan has lower oral bioavailability and a shorter half-life. Frovatriptan (FROVA®) was developed by Vernalis for the treatment of menstruation associated headaches. Frovatriptan's affinity for migraine specific serotonin receptors 5HT1B is believed to be the highest among all triptans.4 In addition, frovatriptan binds to 5HT1D and 5HT7 receptor subtypes.5 Zolmitriptan marketed by AstraZeneca is used to treat acute migraine attacks and cluster headaches. GlaxoSmithKline's naratriptan (Amerge) is also used in the treatment of migraines and some of its side effects include dizziness, tiredness, tingling of the hands and feet and dry mouth. All available triptans are well tolerated and effective.6 The highest incidence of central nervous system (CNS) related side effects (dizziness, drowsiness) was reported for zolmitriptan (5 mg), rizatriptan (10 mg) and eletriptan (40 mg, 80 mg).7 The differences in side-effect profiles for triptans are not likely caused by their different affinity towards serotonin receptors or other neurological receptors in the CNS. There is a positive correlation between the lipophilicity coefficient and CNS side effects; these undesired effects are also dose-dependent. Figure 1 Currently available drugs from the triptan group. 1.2. Serotonin receptors – possible targets for neurologically active marine indole alkaloids Given that depression affects approximately 18 million Americans annually,8 it is crucial to develop new effective treatments for this disorder. Intensive studies are being conducted in the area of new targets for antidepressant drugs,9,10 but most antidepressant drugs still target the neurotransmitter systems, mainly serotonin, dopamine and noradrenaline. Serotonin is one of the neurotransmitters present in the central and peripheral nervous system which plays an important role in normal brain function and regulates sleep, mood, appetite, sexual function, memory, anxiety and many others.11 Serotonin exerts its effects through seven families of receptors (5-HT1 – 5-HT7) further divided into several subclasses. Except for 5-HT3 receptor which is a ligand-gated ion channel, the serotonin receptors belong to the G-protein coupled receptor family. Due to a lack of selective ligands, there is still little known about several 5-HT receptor subclasses.12 Marine monoindole alkaloids, sharing structure similarities with serotonin, are certain to become useful tools to facilitate the understanding of serotonin receptor function and generate new drug leads for the treatment of depression, anxiety, migraines and other 5HT receptor related disorders.

1,469 citations

Journal ArticleDOI
TL;DR: The literature was searched for natural products from marine macroalgae in the Rhodophyta, Phaeophyta and Chlorophyta with biological and pharmacological activity and substances that currently receive most attention from pharmaceutical companies for use in drug development, or from researchers in the field of medicine-related research include: sulphated polysaccharides as antiviral substances.
Abstract: In the last three decades the discovery of metabolites with biological activities from macroalgae has increased significantly. However, despite the intense research effort by academic and corporate institutions, very few products with real potential have been identified or developed. Based on Silverplatter MEDLINE and Aquatic Biology, Aquaculture & Fisheries Resources databases, the literature was searched for natural products from marine macroalgae in the Rhodophyta, Phaeophyta and Chlorophyta with biological and pharmacological activity. Substances that currently receive most attention from pharmaceutical companies for use in drug development, or from researchers in the field of medicine-related research include: sulphated polysaccharides as antiviral substances, halogenated furanones from Delisea pulchra as antifouling compounds, and kahalalide F from a species of Bryopsis as a possible treatment of lung cancer, tumours and AIDS. Other substances such as macroalgal lectins, fucoidans, kainoids and aplysiatoxins are routinely used in biomedical research and a multitude of other substances have known biological activities. The potential pharmaceutical, medicinal and research applications of these compounds are discussed.

745 citations

Journal ArticleDOI
TL;DR: Insight is provided into the life strategies of plant-associated endophytes and soil isolates of B. mycoides through the alteration of expression of an overlapping set of genes, which had been reported to be involved in plant–microbe interactions.
Abstract: Plant root secreted compounds alter the gene expression of associated microorganisms by acting as signal molecules that either stimulate or repel the interaction with beneficial or harmful species, respectively. However, it is still unclear whether two distinct groups of beneficial bacteria, non-plant-associated (soil) strains and plant-associated (endophytic) strains, respond uniformly or variably to the exposure with root exudates. Therefore, Bacillus mycoides, a potential biocontrol agent and plant growth-promoting bacterium, was isolated from the endosphere of potatoes and from soil of the same geographical region. Confocal fluorescence microscopy of plants inoculated with GFP-tagged B. mycoides strains showed that the endosphere isolate EC18 had a stronger plant colonization ability and competed more successfully for the colonization sites than the soil isolate SB8. To dissect these phenotypic differences, the genomes of the two strains were sequenced and the transcriptome response to potato root exudates was compared. The global transcriptome profiles evidenced that the endophytic isolate responded more pronounced than the soil-derived isolate and a higher number of significant differentially expressed genes were detected. Both isolates responded with the alteration of expression of an overlapping set of genes, which had previously been reported to be involved in plant-microbe interactions; including organic substance metabolism, oxidative reduction, and transmembrane transport. Notably, several genes were specifically upregulated in the endosphere isolate EC18, while being oppositely downregulated in the soil isolate SB8. These genes mainly encoded membrane proteins, transcriptional regulators or were involved in amino acid metabolism and biosynthesis. By contrast, several genes upregulated in the soil isolate SB8 and downregulated in the endosphere isolate EC18 were related to sugar transport, which might coincide with the different nutrient availability in the two environments. Altogether, the presented transcriptome profiles provide highly improved insights into the life strategies of plant-associated endophytes and soil isolates of B. mycoides.

623 citations