scispace - formally typeset
Search or ask a question
Author

Danilo Erricolo

Bio: Danilo Erricolo is an academic researcher from University of Illinois at Chicago. The author has contributed to research in topics: Iterative reconstruction & Mathieu function. The author has an hindex of 23, co-authored 173 publications receiving 1601 citations. Previous affiliations of Danilo Erricolo include University of Chicago & University of Siena.


Papers
More filters
Journal ArticleDOI
TL;DR: Using the principles of inverse scattering and diffraction tomography, a simplified theory for below-ground imaging is developed and several inversion schemes based on arbitrarily deployed sensors are devised.
Abstract: Radio frequency (RF) tomography is proposed to detect underground voids, such as tunnels or caches, over relatively wide areas of regard. The RF tomography approach requires a set of low-cost transmitters and receivers arbitrarily deployed on the surface of the ground or slightly buried. Using the principles of inverse scattering and diffraction tomography, a simplified theory for below-ground imaging is developed. In this paper, the principles and motivations in support of RF tomography are introduced. Furthermore, several inversion schemes based on arbitrarily deployed sensors are devised. Then, limitations to performance and system considerations are discussed. Finally, the effectiveness of RF tomography is demonstrated by presenting images reconstructed via the processing of synthetic data.

181 citations

Journal ArticleDOI
TL;DR: Results show up to 25 dB of shielding effectiveness, which changed little with frequency at a fixed composition, thus indicating the potential of these coatings for EMI shielding applications and other technologies requiring both extreme liquid repellency and high electrical conductivity.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a new analog self-interference cancellation (SIC) technique for in-band full-duplex transmission in single-antenna systems is proposed, which uses an RF circulator to separate transmitted (Tx) and received (Rx) signals.
Abstract: We propose a new analog self-interference cancellation (SIC) technique for in-band full-duplex transmission in single-antenna systems. We use an RF circulator to separate transmitted (Tx) and received (Rx) signals. Instead of estimating the SI signals and subtracting them from the Rx signals, we use the inherent secondary SI signals at the circulator, reflected by the antenna, to cancel the primary SI signals leaked from the Tx port to the Rx port. We modified the frequency response of the secondary SI signals using a reconfigurable impedance mismatched terminal (IMT) circuit, which consists of two varactor diodes at the antenna port. We can also adjust the frequency band and the bandwidth by controlling the varactor diodes bias voltages. The IMT adjustability makes it robust to antenna input impedance variations and fabrication errors. We analyze and fabricate a prototype of the proposed technique at 2.45 GHz. We achieved more than 40-dB cancellation over 65 MHz of bandwidth. Our technique is independent of the RF circulator and antenna type and it can be applied to any frequency band. It is also very relevant to small mobile devices because it provides a simple and low-power and low-cost adjustable analog SIC technique.

67 citations

Journal ArticleDOI
TL;DR: Two multipath exploitation techniques to image a hidden target at its true location are presented under the assumptions that the locations of the reflecting walls are known and that the target multipath is resolvable and detectable.
Abstract: Multipath is exploited to image targets that are hidden due to lack of line of sight (LOS) path in urban environments. Urban radar scenes include building walls, therefore creating reflections causing multipath returns. Conventional processing via synthetic aperture beamforming algorithms do not detect or localize the target at its true position. To remove these limitations, two multipath exploitation techniques to image a hidden target at its true location are presented under the assumptions that the locations of the reflecting walls are known and that the target multipath is resolvable and detectable. The first technique directly operates on the radar returns, whereas the second operates on the traditional beamformed image. Both these techniques mitigate the false alarms arising from the multipath while simultaneously permitting the shadowed target to be detected at its true location. While these techniques are general, they are examined for two important urban radar applications: detecting shadowed targets in an urban canyon, and detecting shadowed targets around corners.

50 citations

Journal ArticleDOI
TL;DR: In this article, path loss measurements are taken for different positions of the transmitting and receiving antennas at 25 GHz and compared with theoretical predictions computed by a ray-tracing polygonal line simulator.
Abstract: Scaled models of simple two-dimensional (2-D) urban environments are considered in order to investigate propagation along a vertical plane. Specifically, path loss measurements are taken for different positions of the transmitting and receiving antennas at 25 GHz. Then measurement results are compared with theoretical predictions computed by a ray-tracing polygonal line simulator. The measurements indicate a very good agreement between the ray-tracing model and the experiments.

47 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations

Book ChapterDOI
27 Jan 2005
TL;DR: This chapter will focus on evaluating the pairwise error probability with and without CSI, and how the results of these evaluations can be used via the transfer bound approach to evaluate average BEP of coded modulation transmitted over the fading channel.
Abstract: In studying the performance of coded communications over memoryless channels (with or without fading), the results are given as upper bounds on the average bit error probability (BEP). In principle, there are three different approaches to arriving at these bounds, all of which employ obtaining the so-called pairwise error probability , or the probability of choosing one symbol sequence over another for a given pair of possible transmitted symbol sequences, followed by a weighted summation over all pairwise events. In this chapter, we will focus on the results obtained from the third approach since these provide the tightest upper bounds on the true performance. The first emphasis will be placed on evaluating the pairwise error probability with and without CSI, following which we shall discuss how the results of these evaluations can be used via the transfer bound approach to evaluate average BEP of coded modulation transmitted over the fading channel.

648 citations

Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this article, a review of carbon materials for significant emerging applications that relate to structural self-sensing (a structural material sensing its own condition), electromagnetic interference shielding (blocking radio wave) and thermal interfacing (improving thermal contacts by using thermal interface materials).

513 citations