scispace - formally typeset
Search or ask a question
Author

Daniyar Turmukhambetov

Bio: Daniyar Turmukhambetov is an academic researcher from University College London. The author has contributed to research in topics: Feature (computer vision) & Task (project management). The author has an hindex of 9, co-authored 26 publications receiving 952 citations. Previous affiliations of Daniyar Turmukhambetov include Helsinki University of Technology.

Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: H-Nets are presented, a CNN exhibiting equivariance to patch-wise translation and 360-rotation, and it is demonstrated that their layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization.
Abstract: Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch. H-Nets use a rich, parameter-efficient and fixed computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.

614 citations

Posted Content
TL;DR: Harmonic Networks as mentioned in this paper replace regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch, which can encode complicated rotational invariants.
Abstract: Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch. H-Nets use a rich, parameter-efficient and low computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.

292 citations

Proceedings ArticleDOI
19 Sep 2019
TL;DR: This work studies the problem of ambiguous reprojections in depth-prediction from stereo-based self-supervision, and introduces Depth Hints to alleviate their effects, and produces state-of-the-art depth predictions on the KITTI benchmark.
Abstract: Monocular depth estimators can be trained with various forms of self-supervision from binocular-stereo data to circumvent the need for high-quality laser-scans or other ground-truth data. The disadvantage, however, is that the photometric reprojection losses used with self-supervised learning typically have multiple local minima. These plausible-looking alternatives to ground-truth can restrict what a regression network learns, causing it to predict depth maps of limited quality. As one prominent example, depth discontinuities around thin structures are often incorrectly estimated by current state-of-the-art methods. Here, we study the problem of ambiguous reprojections in depth-prediction from stereo-based self-supervision, and introduce Depth Hints to alleviate their effects. Depth Hints are complementary depth-suggestions obtained from simple off-the-shelf stereo algorithms. These hints enhance an existing photometric loss function, and are used to guide a network to learn better weights. They require no additional data, and are assumed to be right only sometimes. We show that using our Depth Hints gives a substantial boost when training several leading self-supervised-from-stereo models, not just our own. Further, combined with other good practices, we produce state-of-the-art depth predictions on the KITTI benchmark.

161 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: A simple method is proposed to construct a deep feature space, with explicitly disentangled representations of several known transformations, using a transforming encoder-decoder network with a custom feature transform layer, acting on the hidden representations.
Abstract: Deep feature spaces have the capacity to encode complex transformations of their input data. However, understanding the relative feature-space relationship between two transformed encoded images is difficult. For instance, what is the relative feature space relationship between two rotated images? What is decoded when we interpolate in feature space? Ideally, we want to disentangle confounding factors, such as pose, appearance, and illumination, from object identity. Disentangling these is difficult because they interact in very nonlinear ways. We propose a simple method to construct a deep feature space, with explicitly disentangled representations of several known transformations. A person or algorithm can then manipulate the disentangled representation, for example, to re-render an image with explicit control over parameterized degrees of freedom. The feature space is constructed using a transforming encoder-decoder network with a custom feature transform layer, acting on the hidden representations. We demonstrate the advantages of explicit disentangling on a variety of datasets and transformations, and as an aid for traditional tasks, such as classification.

97 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: In this article, the inverse wavelet transform is used to reconstruct high-fidelity depth maps by predicting sparse wavelet coefficients, which can be learned without direct supervision on coefficients.
Abstract: We present a novel method for predicting accurate depths from monocular images with high efficiency. This optimal efficiency is achieved by exploiting wavelet decomposition, which is integrated in a fully differentiable encoder-decoder architecture. We demonstrate that we can reconstruct high-fidelity depth maps by predicting sparse wavelet coefficients.In contrast with previous works, we show that wavelet coefficients can be learned without direct supervision on coefficients. Instead we supervise only the final depth image that is reconstructed through the inverse wavelet transform. We additionally show that wavelet coefficients can be learned in fully self-supervised scenarios, without access to ground-truth depth. Finally, we apply our method to different state-of-the-art monocular depth estimation models, in each case giving similar or better results compared to the original model, while requiring less than half the multiply-adds in the decoder network.

50 citations


Cited by
More filters
Posted Content
TL;DR: This work presents an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples, and introduces a cycle consistency loss to push F(G(X)) ≈ X (and vice versa).
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain $X$ to a target domain $Y$ in the absence of paired examples. Our goal is to learn a mapping $G: X \rightarrow Y$ such that the distribution of images from $G(X)$ is indistinguishable from the distribution $Y$ using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping $F: Y \rightarrow X$ and introduce a cycle consistency loss to push $F(G(X)) \approx X$ (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

4,465 citations

Proceedings ArticleDOI
17 Mar 2017
TL;DR: Deformable convolutional networks as discussed by the authors augment the spatial sampling locations in the modules with additional offsets and learn the offsets from the target tasks, without additional supervision, which can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard backpropagation.
Abstract: Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in their building modules. In this work, we introduce two new modules to enhance the transformation modeling capability of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from the target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the performance of our approach. For the first time, we show that learning dense spatial transformation in deep CNNs is effective for sophisticated vision tasks such as object detection and semantic segmentation. The code is released at https://github.com/msracver/Deformable-ConvNets.

3,318 citations

01 Jan 2006

3,012 citations

Proceedings Article
01 Jan 1999

2,010 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations