scispace - formally typeset
Search or ask a question
Author

Danny Pudjianto

Bio: Danny Pudjianto is an academic researcher from Imperial College London. The author has contributed to research in topics: Distributed generation & Wind power. The author has an hindex of 24, co-authored 97 publications receiving 3064 citations. Previous affiliations of Danny Pudjianto include University of Chile & University of Manchester.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a concept of virtual power plant (VPP) is presented along with the overarching structure of the VPP, the primary vehicle for delivering cost efficient integration of distributed energy resources (DER) into the existing power systems.
Abstract: A concept is presented along with the overarching structure of the virtual power plant (VPP), the primary vehicle for delivering cost efficient integration of distributed energy resources (DER) into the existing power systems. The growing pressure, primarily driven by environmental concerns, for generating more electricity from renewables and improving energy efficiency have promoted the application of DER into electricity systems. So far, DER have been used to displace energy from conventional generating plants but not to displace their capacity as they are not visible to system operators. If this continues, this will lead to problematic over-capacity issues and under-utilisation of the assets, reduce overall system efficiency and eventually increase the electricity cost that needs to be paid by society. The concept of VPP was developed to enhance the visibility and control of DER to system operators and other market actors by providing an appropriate interface between these system components. The technical and commercial functionality facilitated through the VPP are described and concludes with case studies demonstrating the benefit of aggregation (VPP concept) and the use of the optimal power flow algorithm to characterise VPP

865 citations

Journal ArticleDOI
TL;DR: In this article, an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity, and it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price.

275 citations

Journal ArticleDOI
TL;DR: A novel whole-systems approach to valuing the contribution of grid-scale electricity storage is presented, which simultaneously optimizes investment into new generation, network and storage capacity, while minimising system operation cost, and also considering reserve and security requirements.
Abstract: Energy storage represents one of the key enabling technologies to facilitate an efficient system integration of intermittent renewable generation and electrified transport and heating demand. This paper presents a novel whole-systems approach to valuing the contribution of grid-scale electricity storage. This approach simultaneously optimizes investment into new generation, network and storage capacity, while minimising system operation cost, and also considering reserve and security requirements. Case studies on the system of Great Britain (GB) with high share of renewable generation demonstrate that energy storage can simultaneously bring benefits to several sectors, including generation, transmission and distribution, while supporting real-time system balancing. The analysis distinguishes between bulk and distributed storage applications, while also considering the competition against other technologies, such as flexible generation, interconnection and demand-side response.

264 citations

Journal ArticleDOI
TL;DR: In this article, the benefits of various applications of smart network control and demand response technologies for enhancing the integration of these future load categories, and for improvements in operation management and efficient use of distribution network assets are addressed.

145 citations

Journal ArticleDOI
TL;DR: The United Kingdom is leading Europe in its power market reforms and is currently engaged in addressing issues of DG integration through development of innovative approaches to network planning, operation, regulation, and pricing as mentioned in this paper.
Abstract: The United Kingdom is leading Europe in its power market reforms and is currently engaged in addressing issues of DG integration through development of innovative approaches to network planning, operation, regulation, and pricing. This article draws on these recent advances to explore active management technologies, developing regulatory arrangements for network operation, and new commercial opportunities emerging from the low-carbon climate change agenda. It explores the changing role of the distribution system operator (DSO) in response to increasing penetration of DG and identifies the transitions currently taking place in the United Kingdom toward integration of DG that has wider implications for extrapolation across Europe.

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

2,358 citations

Journal ArticleDOI
TL;DR: This paper presents a detailed overview of the basic concepts of PSO and its variants, and provides a comprehensive survey on the power system applications that have benefited from the powerful nature ofPSO as an optimization technique.
Abstract: Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed.

2,147 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of grid code technical requirements regarding the connection of large wind farms to the electric power systems, including active and reactive power regulation, voltage and frequency operating limits and wind farm behaviour during grid disturbances.
Abstract: This paper provides an overview of grid code technical requirements regarding the connection of large wind farms to the electric power systems. The grid codes examined are generally compiled by transmission system operators (TSOs) of countries or regions with high wind penetration and therefore incorporate the accumulated experience after several years of system operation at significant wind penetration levels. The paper focuses on the most important technical requirements for wind farms, included in most grid codes, such as active and reactive power regulation, voltage and frequency operating limits and wind farm behaviour during grid disturbances. The paper also includes a review of modern wind turbine technologies, regarding their capability of satisfying the requirements set by the codes, demonstrating that recent developments in wind turbine technology provide wind farms with stability and regulation capabilities directly comparable to those of conventional generating plants.

1,331 citations

Journal ArticleDOI
TL;DR: In this article, the impact of different levels of plug-in electric vehicle penetration on distribution network investment and incremental energy losses is evaluated based on the use of a large-scale distribution planning model which is used to analyze two real distribution areas.
Abstract: Plug-in electric vehicles (PEVs) present environmental and energy security advantages versus conventional gasoline vehicles. In the near future, the number of plug-in electric vehicles will likely grow significantly in the world. Despite the aforementioned advantages, the connection of PEV to the power grid poses a series of new challenges for electric utilities. This paper proposes a comprehensive approach for evaluating the impact of different levels of PEV penetration on distribution network investment and incremental energy losses. The proposed approach is based on the use of a large-scale distribution planning model which is used to analyze two real distribution areas. Obtained results show that depending on the charging strategies, investment costs can increase up to 15% of total actual distribution network investment costs, and energy losses can increase up to 40% in off-peak hours for a scenario with 60% of total vehicles being PEV.

1,113 citations