scispace - formally typeset
Search or ask a question
Author

Danqi Chen

Bio: Danqi Chen is an academic researcher from Princeton University. The author has contributed to research in topics: Computer science & Question answering. The author has an hindex of 28, co-authored 55 publications receiving 16626 citations. Previous affiliations of Danqi Chen include Tsinghua University & Stanford University.


Papers
More filters
Posted Content

[...]

TL;DR: It is found that BERT was significantly undertrained, and can match or exceed the performance of every model published after it, and the best model achieves state-of-the-art results on GLUE, RACE and SQuAD.
Abstract: Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.

6,623 citations

Proceedings ArticleDOI

[...]

01 Jan 2014
TL;DR: This work proposes a novel way of learning a neural network classifier for use in a greedy, transition-based dependency parser that can work very fast, while achieving an about 2% improvement in unlabeled and labeled attachment scores on both English and Chinese datasets.
Abstract: Almost all current dependency parsers classify based on millions of sparse indicator features. Not only do these features generalize poorly, but the cost of feature computation restricts parsing speed significantly. In this work, we propose a novel way of learning a neural network classifier for use in a greedy, transition-based dependency parser. Because this classifier learns and uses just a small number of dense features, it can work very fast, while achieving an about 2% improvement in unlabeled and labeled attachment scores on both English and Chinese datasets. Concretely, our parser is able to parse more than 1000 sentences per second at 92.2% unlabeled attachment score on the English Penn Treebank.

1,761 citations

Proceedings Article

[...]

05 Dec 2013
TL;DR: An expressive neural tensor network suitable for reasoning over relationships between two entities given a subset of the knowledge base is introduced and performance can be improved when entities are represented as an average of their constituting word vectors.
Abstract: Knowledge bases are an important resource for question answering and other tasks but often suffer from incompleteness and lack of ability to reason over their discrete entities and relationships. In this paper we introduce an expressive neural tensor network suitable for reasoning over relationships between two entities. Previous work represented entities as either discrete atomic units or with a single entity vector representation. We show that performance can be improved when entities are represented as an average of their constituting word vectors. This allows sharing of statistical strength between, for instance, facts involving the "Sumatran tiger" and "Bengal tiger." Lastly, we demonstrate that all models improve when these word vectors are initialized with vectors learned from unsupervised large corpora. We assess the model by considering the problem of predicting additional true relations between entities given a subset of the knowledge base. Our model outperforms previous models and can classify unseen relationships in WordNet and FreeBase with an accuracy of 86.2% and 90.0%, respectively.

1,655 citations

Journal ArticleDOI

[...]

TL;DR: The approach extends BERT by masking contiguous random spans, rather than random tokens, and training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it.
Abstract: We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random token...

775 citations

Posted Content

[...]

TL;DR: In this paper, a multi-layer recurrent neural network model was proposed to detect answer spans in Wikipedia paragraphs, which combines a search component based on bigram hashing and TF-IDF matching.
Abstract: This paper proposes to tackle open- domain question answering using Wikipedia as the unique knowledge source: the answer to any factoid question is a text span in a Wikipedia article. This task of machine reading at scale combines the challenges of document retrieval (finding the relevant articles) with that of machine comprehension of text (identifying the answer spans from those articles). Our approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs. Our experiments on multiple existing QA datasets indicate that (1) both modules are highly competitive with respect to existing counterparts and (2) multitask learning using distant supervision on their combination is an effective complete system on this challenging task.

694 citations


Cited by
More filters
Posted Content

[...]

TL;DR: It is found that BERT was significantly undertrained, and can match or exceed the performance of every model published after it, and the best model achieves state-of-the-art results on GLUE, RACE and SQuAD.
Abstract: Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.

6,623 citations

Proceedings Article

[...]

Quoc V. Le1, Tomas Mikolov1
21 Jun 2014
TL;DR: Paragraph Vector is an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents, and its construction gives the algorithm the potential to overcome the weaknesses of bag-of-words models.
Abstract: Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperforms bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.

6,050 citations

Proceedings Article

[...]

19 Jun 2019
TL;DR: The authors proposes XLNet, a generalized autoregressive pretraining method that enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and overcomes the limitations of BERT The authors.
Abstract: With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, under comparable experiment setting, XLNet outperforms BERT on 20 tasks, often by a large margin, including question answering, natural language inference, sentiment analysis, and document ranking.

3,824 citations

Proceedings Article

[...]

05 Dec 2013
TL;DR: TransE is proposed, a method which models relationships by interpreting them as translations operating on the low-dimensional embeddings of the entities, which proves to be powerful since extensive experiments show that TransE significantly outperforms state-of-the-art methods in link prediction on two knowledge bases.
Abstract: We consider the problem of embedding entities and relationships of multi-relational data in low-dimensional vector spaces. Our objective is to propose a canonical model which is easy to train, contains a reduced number of parameters and can scale up to very large databases. Hence, we propose TransE, a method which models relationships by interpreting them as translations operating on the low-dimensional embeddings of the entities. Despite its simplicity, this assumption proves to be powerful since extensive experiments show that TransE significantly outperforms state-of-the-art methods in link prediction on two knowledge bases. Besides, it can be successfully trained on a large scale data set with 1M entities, 25k relationships and more than 17M training samples.

3,459 citations

Posted Content

[...]

Quoc V. Le1, Tomas Mikolov1
TL;DR: The authors proposed paragraph vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents, and achieved new state-of-the-art results on several text classification and sentiment analysis tasks.
Abstract: Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.

3,313 citations