scispace - formally typeset
Search or ask a question
Author

Dany Mezher

Bio: Dany Mezher is an academic researcher from Saint Joseph's University. The author has contributed to research in topics: Radio resource management & Throughput. The author has an hindex of 8, co-authored 10 publications receiving 197 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A network-assisted approach to optimal, learning-based, and heuristic policies, such as blocking probability and average throughput, and a reinforcement learning approach is introduced to derive what to signal to mobiles.
Abstract: When several radio access technologies (e.g., HSPA, LTE, WiFi, and WiMAX) cover the same region, deciding to which one mobiles connect is known as the Radio Access Technology (RAT) selection problem. To reduce network signaling and processing load, decisions are generally delegated to mobile users. Mobile users aim to selfishly maximize their utility. However, as they do not cooperate, their decisions may lead to performance inefficiency. In this paper, to overcome this limitation, we propose a network-assisted approach. The network provides information for the mobiles to make more accurate decisions. By appropriately tuning network information, user decisions are globally expected to meet operator objectives, avoiding undesirable network states. Deriving network information is formulated as a semi-Markov decision process (SMDP), and optimal policies are computed using the Policy Iteration algorithm. Also, and since network parameters may not be easily obtained, a reinforcement learning approach is introduced to derive what to signal to mobiles. The performances of optimal, learning-based, and heuristic policies, such as blocking probability and average throughput, are analyzed. When tuning thresholds are pertinently set, our heuristic achieves performance very close to the optimal solution. Moreover, although it provides lower performance, our learning-based algorithm has the crucial advantage of requiring no prior parameterization.

89 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on Inter-Cell Interference Coordination techniques is performed, and the most suitable ICIC technique for each network scenario is identified under several parameters such as different network loads, radio conditions, and user distributions.
Abstract: LTE networks' main challenge is to efficiently use the available spectrum, and to provide satisfying quality of service for mobile users. However, using the same bandwidth among adjacent cells leads to occurrence of Inter-cell Interference especially at the cell-edge. Basic interference mitigation approaches consider bandwidth partitioning techniques between adjacent cells, such as frequency reuse of factor m schemes, to minimize cell-edge interference. Although SINR values are improved, such techniques lead to significant reduction in the maximum achievable data rate. Several improvements have been proposed to enhance the performance of frequency reuse schemes, where restrictions are made on resource blocks usage, power allocation, or both. Nevertheless, bandwidth partitioning methods still affect the maximum achievable throughput. In this proposal, we intend to perform a comprehensive survey on Inter-Cell Interference Coordination (ICIC) techniques, and we study their performance while putting into consideration various design parameters. This study is implemented throughout intensive system level simulations under several parameters such as different network loads, radio conditions, and user distributions. Simulation results show the advantages and the limitations of each technique compared to frequency reuse-1 model. Thus, we are able to identify the most suitable ICIC technique for each network scenario.

44 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid decision framework that dynamically integrates operator objectives and user preferences is proposed for radio access technology selection in heterogeneous wireless networks, where mobile users are assisted in their decisions by the network that broadcasts cost and QoS information.
Abstract: In heterogeneous wireless networks, different radio access technologies are integrated and may be jointly managed. To optimize network performance and capacity, efficient common radio resource management (CRRM) mechanisms need to be defined. This paper tackles the radio access technology (RAT) selection, a key CRRM functionality, and proposes a hybrid decision framework that dynamically integrates operator objectives and user preferences. Mobile users are assisted in their decisions by the network that broadcasts cost and QoS information. Our hybrid approach involves two inter-dependent decision-making processes. The first one, on the network side, consists in deriving appropriate network information so as to guide user decisions in a way to meet operator objectives. The second one, where individual users combine their needs and preferences with the signaled network information, consists in selecting the RAT to be associated with in a way to maximize user utility. We first focus on the user side and present a satisfaction-based multi-criteria decision-making method. By avoiding inadequate decisions, our algorithm outperforms existing solutions and maximizes user utility. Further, we introduce two heuristic methods, namely the staircase and the slope tuning policies, to dynamically derive network information in a way to enhance resource utilization. The performance of each decision-making process, on the network and user sides, is evaluated separately through extensive simulations. A comparison of our hybrid approach with six different RAT selection schemes is also presented.

19 citations

Proceedings ArticleDOI
27 Jul 2015
TL;DR: System level simulations show the advantages and limitations of each of the examined techniques compared to frequency reuse-1 model under different network loads and user distributions, which helps to determine the most suitable ICIC technique to be used.
Abstract: Frequency reuse-1 model is required to satisfy the exponential increase of data demands in mobile networks, such as the Long Term Evolution (LTE) of Universal Mobile Terrestrial radio access System (UMTS). However, the simultaneous usage of the same frequency resources in adjacent LTE cells creates inter-cell interference problems, that mainly affect cell-edge users. Inter-Cell Interference Coordination (ICIC) techniques are proposed to avoid the negative impact of interference on system performance. They establish restrictions on resource usage, such as Fractional Frequency Reuse (FFR), and on power allocation such as Soft Frequency Reuse (SFR). In this paper, we classify the existing ICIC techniques, and investigate the performance of reuse-1, reuse-3, FFR, and SFR schemes under various user distributions, and for various network loads. Performance of cell-center and cell-edge users are inspected, as well as the overall spectral efficiency. System level simulations show the advantages and limitations of each of the examined techniques compared to frequency reuse-1 model under different network loads and user distributions, which helps us to determine the most suitable ICIC technique to be used.

16 citations

Journal ArticleDOI
TL;DR: This study introduces a cooperative distributed interference management algorithm, where resource and power allocation decisions are jointly made by each cell in collaboration with its neighbouring cells, for increasing user satisfaction, improving system throughput, and increasing energy efficiency.
Abstract: Mobile network operators are facing the challenge to increase network capacity and satisfy the growth in data traffic demands In this context, long-term evolution (LTE) networks, LTE-advanced networks, and future mobile networks of the fifth generation seek to maximise spectrum profitability by choosing the frequency reuse-1 model Owing to this frequency usage model, advanced radio resource management and power allocation schemes are required to avoid the negative impact of interference on system performance Some of these schemes modify resource allocation between network cells, while others adjust both resource and power allocation In this study, the authors introduce a cooperative distributed interference management algorithm, where resource and power allocation decisions are jointly made by each cell in collaboration with its neighbouring cells Objectives sought are: increasing user satisfaction, improving system throughput, and increasing energy efficiency The proposed technique is compared with the frequency reuse-1 model and to other state-of-the-art techniques under uniform and non-uniform user distributions and for different network loads They address scenarios where throughput demands are homogeneous and non-homogeneous between network cells System-level simulation results demonstrate that their technique succeeds in achieving the desired objectives under various user distributions and throughput demands

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey on RA in HetNets for 5G communications is provided and two potential structures for 6G communications are provided, such as a learning-based RA structure and a control- based RA structure.
Abstract: In the fifth-generation (5G) mobile communication system, various service requirements of different communication environments are expected to be satisfied. As a new evolution network structure, heterogeneous network (HetNet) has been studied in recent years. Compared with homogeneous networks, HetNets can increase the opportunity in the spatial resource reuse and improve users’ quality of service by developing small cells into the coverage of macrocells. Since there is mutual interference among different users and the limited spectrum resource in HetNets, however, efficient resource allocation (RA) algorithms are vitally important to reduce the mutual interference and achieve spectrum sharing. In this article, we provide a comprehensive survey on RA in HetNets for 5G communications. Specifically, we first introduce the definition and different network scenarios of HetNets. Second, RA models are discussed. Then, we present a classification to analyze current RA algorithms for the existing works. Finally, some challenging issues and future research trends are discussed. Accordingly, we provide two potential structures for 6G communications to solve the RA problems of the next-generation HetNets, such as a learning-based RA structure and a control-based RA structure. The goal of this article is to provide important information on HetNets, which could be used to guide the development of more efficient techniques in this research area.

321 citations

Posted Content
TL;DR: In this article, the authors provide a comprehensive tutorial on the main concepts of machine learning, in general, and artificial neural networks (ANNs), in particular, and their potential applications in wireless communications.
Abstract: Next-generation wireless networks must support ultra-reliable, low-latency communication and intelligently manage a massive number of Internet of Things (IoT) devices in real-time, within a highly dynamic environment. This need for stringent communication quality-of-service (QoS) requirements as well as mobile edge and core intelligence can only be realized by integrating fundamental notions of artificial intelligence (AI) and machine learning across the wireless infrastructure and end-user devices. In this context, this paper provides a comprehensive tutorial that introduces the main concepts of machine learning, in general, and artificial neural networks (ANNs), in particular, and their potential applications in wireless communications. For this purpose, we present a comprehensive overview on a number of key types of neural networks that include feed-forward, recurrent, spiking, and deep neural networks. For each type of neural network, we present the basic architecture and training procedure, as well as the associated challenges and opportunities. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality and edge caching.For each individual application, we present the main motivation for using ANNs along with the associated challenges while also providing a detailed example for a use case scenario and outlining future works that can be addressed using ANNs. In a nutshell, this article constitutes one of the first holistic tutorials on the development of machine learning techniques tailored to the needs of future wireless networks.

265 citations

Journal ArticleDOI
TL;DR: The fundamental concepts of supervised, unsupervised, and reinforcement learning are established, taking a look at what has been done so far in the adoption of ML in the context of mobile and wireless communication, and the promising approaches for how ML can contribute to supporting each target 5G network requirement are discussed.
Abstract: Driven by the demand to accommodate today’s growing mobile traffic, 5G is designed to be a key enabler and a leading infrastructure provider in the information and communication technology industry by supporting a variety of forthcoming services with diverse requirements. Considering the ever-increasing complexity of the network, and the emergence of novel use cases such as autonomous cars, industrial automation, virtual reality, e-health, and several intelligent applications, machine learning (ML) is expected to be essential to assist in making the 5G vision conceivable. This paper focuses on the potential solutions for 5G from an ML-perspective. First, we establish the fundamental concepts of supervised, unsupervised, and reinforcement learning, taking a look at what has been done so far in the adoption of ML in the context of mobile and wireless communication, organizing the literature in terms of the types of learning. We then discuss the promising approaches for how ML can contribute to supporting each target 5G network requirement, emphasizing its specific use cases and evaluating the impact and limitations they have on the operation of the network. Lastly, this paper investigates the potential features of Beyond 5G (B5G), providing future research directions for how ML can contribute to realizing B5G. This article is intended to stimulate discussion on the role that ML can play to overcome the limitations for a wide deployment of autonomous 5G/B5G mobile and wireless communications.

249 citations

Posted Content
09 Oct 2017
TL;DR: This paper provides a comprehensive tutorial that introduces the main concepts of machine learning, in general, and artificial neural networks, in particular, and their potential applications in wireless communications and presents a comprehensive overview on a number of key types of neural networks that include feed-forward, recurrent, spiking, and deep neural networks.
Abstract: Next-generation wireless networks must support ultra-reliable, low-latency communication and intelligently manage a massive number of Internet of Things (IoT) devices in real-time, within a highly dynamic environment. This need for stringent communication quality-of-service (QoS) requirements as well as mobile edge and core intelligence can only be realized by integrating fundamental notions of artificial intelligence (AI) and machine learning across the wireless infrastructure and end-user devices. In this context, this paper provides a comprehensive tutorial that introduces the main concepts of machine learning, in general, and artificial neural networks (ANNs), in particular, and their potential applications in wireless communications. For this purpose, we present a comprehensive overview on a number of key types of neural networks that include feed-forward, recurrent, spiking, and deep neural networks. For each type of neural network, we present the basic architecture and training procedure, as well as the associated challenges and opportunities. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality and edge caching.For each individual application, we present the main motivation for using ANNs along with the associated challenges while also providing a detailed example for a use case scenario and outlining future works that can be addressed using ANNs. In a nutshell, this article constitutes one of the first holistic tutorials on the development of machine learning techniques tailored to the needs of future wireless networks.

204 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of authentication and privacy-preserving schemes for 4G and 5G cellular networks can be found in this paper, where the authors provide a taxonomy and comparison of authentication schemes in terms of tables.

163 citations