scispace - formally typeset
Search or ask a question
Author

Danyah Trabzuni

Other affiliations: University College London
Bio: Danyah Trabzuni is an academic researcher from UCL Institute of Neurology. The author has contributed to research in topics: Genome-wide association study & Genetic variability. The author has an hindex of 5, co-authored 5 publications receiving 3361 citations. Previous affiliations of Danyah Trabzuni include University College London.

Papers
More filters
Journal ArticleDOI
Alan E. Renton1, Elisa Majounie1, Adrian James Waite2, Javier Simón-Sánchez3, Javier Simón-Sánchez4, Sara Rollinson5, J. Raphael Gibbs6, J. Raphael Gibbs1, Jennifer C. Schymick1, Hannu Laaksovirta7, John C. van Swieten4, John C. van Swieten3, Liisa Myllykangas7, Hannu Kalimo7, Anders Paetau7, Yevgeniya Abramzon1, Anne M. Remes8, Alice Kaganovich1, Sonja W. Scholz9, Sonja W. Scholz10, Sonja W. Scholz1, Jamie Duckworth1, Jinhui Ding1, Daniel W. Harmer11, Dena G. Hernandez6, Dena G. Hernandez1, Janel O. Johnson1, Janel O. Johnson6, Kin Y. Mok6, Mina Ryten6, Danyah Trabzuni6, Rita Guerreiro6, Richard W. Orrell6, James Neal2, Alexandra Murray12, J. P. Pearson2, Iris E. Jansen4, David Sondervan4, Harro Seelaar3, Derek J. Blake2, Kate Young5, Nicola Halliwell5, Janis Bennion Callister5, Greg Toulson5, Anna Richardson5, Alexander Gerhard5, Julie S. Snowden5, David M. A. Mann5, David Neary5, Mike A. Nalls1, Terhi Peuralinna7, Lilja Jansson7, Veli-Matti Isoviita7, Anna-Lotta Kaivorinne8, Maarit Hölttä-Vuori7, Elina Ikonen7, Raimo Sulkava13, Michael Benatar14, Joanne Wuu14, Adriano Chiò15, Gabriella Restagno, Giuseppe Borghero16, Mario Sabatelli17, David Heckerman18, Ekaterina Rogaeva19, Lorne Zinman19, Jeffrey D. Rothstein9, Michael Sendtner20, Carsten Drepper20, Evan E. Eichler21, Can Alkan21, Ziedulla Abdullaev1, Svetlana Pack1, Amalia Dutra1, Evgenia Pak1, John Hardy6, Andrew B. Singleton1, Nigel Williams2, Peter Heutink4, Stuart Pickering-Brown5, Huw R. Morris2, Huw R. Morris12, Huw R. Morris22, Pentti J. Tienari7, Bryan J. Traynor9, Bryan J. Traynor1 
20 Oct 2011-Neuron
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.

3,784 citations

Journal ArticleDOI
TL;DR: A mutation in the C12orf65 gene is described that causes recessive form of CMT6 and the role of mitochondrial dysfunction in this complex axonal neuropathy is confirmed.
Abstract: Objective Charcot-Marie Tooth disease (CMT) forms a clinically and genetically heterogeneous group of disorders. Although a number of disease genes have been identified for CMT, the gene discovery for some complex form of CMT has lagged behind. The association of neuropathy and optic atrophy (also known as CMT type 6) has been described with autosomaldominant, recessive and X-linked modes of inheritance. Mutations in Mitofusin 2 have been found to cause dominant forms of CMT6. Phosphoribosylpyrophosphate synthetase-I mutations cause X-linked CMT6, but until now, mutations in the recessive forms of disease have never been identified. Methods We here describe a family with three affected individuals who inherited in an autosomal recessive fashion a childhood onset neuropathy and optic atrophy. Using homozygosity mapping in the family and exome sequencing in two affected individuals we identified a novel protein-truncating mutation in the C12orf65 gene, which encodes for a protein involved in mitochondrial translation. Using a variety of methods we investigated the possibility of mitochondrial impairment in the patients cell lines. Results We described a large consanguineous family with neuropathy and optic atrophy carrying a loss of function mutation in the C12orf65 gene. We report mitochondrial impairment in the patients cell lines, followed by multiple lines of evidence which include decrease of complex V activity and stability (blue nativegel assay), decrease in mitochondrial respiration rate and reduction of mitochondrial membrane potential. Conclusions This work describes a mutation in the C12orf65 gene that causes recessive form of CMT6 and confirms the role of mitochondrial dysfunction in this complex axonal neuropathy.

35 citations

Posted ContentDOI
07 Jan 2020-bioRxiv
TL;DR: Two new regulators of PINK1-mitophagy, KAT8 and KANSL1, are identified, previously shown to modulate lysine acetylation, and establish a novel pathway for drug targeting in neurodegeneration.
Abstract: Parkinson’s disease (PD) is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies (GWAS) has considerably advanced our understanding of the PD genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial PD, but its relevance to idiopathic PD is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through GWAS. We identified two new regulators of PINK1-mitophagy, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings establish PINK1-mitophagy as a contributing factor to idiopathic PD. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. Our data provide evidence that this assignment is likely to be incorrect and that variability at KANSL1 underpins this association. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.

12 citations

Journal ArticleDOI
TL;DR: A comprehensive project to determine the effects of common genetic variability on whole genome gene expression of complex human neurological and psychiatric disorders.
Abstract: Surprisingly, whole genome analyses of complex human neurological and psychiatric disorders have revealed that many genetic risk factors are likely to influence gene expression rather than alter protein sequences. Previous analyses of neurological diseases have shown that genetic variability in gene expression levels of deposited proteins influence disease risk. With this background, we have embarked on a comprehensive project to determine the effects of common genetic variability on whole genome gene expression.

11 citations

Journal ArticleDOI
TL;DR: A large number of these disease associations do not map to coding changes in protein open reading frames, but rather are believed to lead to genetic variability in gene expression and splicing.
Abstract: Over the last year, many reliable genetic associations with complex diseases have been reported including some associations with complex neurological and psychiatric diseases. Many of these disease associations do not map to coding changes in protein open reading frames, but rather are believed to lead to genetic variability in gene expression and splicing. Such effects can be dissected by studies, which use genetic variability in mRNA expression as quantitative traits and regress these traits against genotype.

5 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
10 Nov 2016-Nature
TL;DR: Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified, and emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.

1,382 citations

Journal ArticleDOI
07 Aug 2013-Neuron
TL;DR: It is presented the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.

1,347 citations

Journal ArticleDOI
TL;DR: Current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1 are summarized and how each new genetic discovery is broadening the phenotype associated with the clinical entity the authors know as ALS is outlined.
Abstract: Considerable progress has been made in unraveling the genetic etiology of amyotrophic lateral sclerosis (ALS), the most common form of adult-onset motor neuron disease and the third most common neurodegenerative disease overall. Here we review genes implicated in the pathogenesis of motor neuron degeneration and how this new information is changing the way we think about this fatal disorder. Specifically, we summarize current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1, and evaluate the information being gleaned from genome-wide association studies. We also outline emerging themes in ALS research, such as next-generation sequencing approaches to identify de novo mutations, the genetic convergence of familial and sporadic ALS, the proposed oligogenic basis for the disease, and how each new genetic discovery is broadening the phenotype associated with the clinical entity we know as ALS.

1,298 citations