scispace - formally typeset
Search or ask a question
Author

Daoxiang Zhang

Other affiliations: Dalian Medical University
Bio: Daoxiang Zhang is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Phosphorylation & Glycolysis. The author has an hindex of 7, co-authored 7 publications receiving 476 citations. Previous affiliations of Daoxiang Zhang include Dalian Medical University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that TGF-β1- or PDGF-induced CAFs switch from oxidative phosphorylation to aerobic glycolysis, and downregulation of isocitrate dehydrogenase 3α (IDH3α) is identified as a marker for this switch.

249 citations

Journal ArticleDOI
TL;DR: It is demonstrated that miR-21 and Smad7 are critical regulators of TGF-β1 signaling during the induction of CAF formation.
Abstract: How TGF-β1-mediated signaling pathways are finely tuned to orchestrate the generation of carcinoma-associated fibroblasts (CAFs) is poorly understood Here, we demonstrate that miR-21 and the signaling of its target Smad 7 determine TGF-β1-induced CAF formation In primary cultured fibroblasts, mature miR-21 increases after TGF-β1 treatment, whereas the Smad 7 protein level decreases MiR-21 binds to the 3′ UTR of Smad7 mRNA and inhibits its translation, rather than causing its degradation Most importantly, Smad 7 is bound to Smad 2 and 3, which are thought to competitively bind to TGFBR1 and prevents their activation upon TGF-β1 stimulation The depletion of miR-21 or the overexpression of Smad 7 blocks TGF-β1-induced CAF formation, whereas the overexpression of miR-21 or the depletion of Smad 7 promotes CAF formation, even without TGF-β1 stimulation Collectively, these findings clearly demonstrate that miR-21 and Smad7 are critical regulators of TGF-β1 signaling during the induction of CAF formation

147 citations

Journal ArticleDOI
TL;DR: It is found that hypoxia induces miR-424 expression and that miR -424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3′ untranslated region.
Abstract: Chemotherapy resistance of tumor cells is a big challenge. Adaption to hypoxia is an essential cellular response that is controlled by the master oxygen-sensitive transcription factor HIF1 (hypoxia-inducible factor 1). The mechanism by which tumor cells acquire resistance to chemotherapy under hypoxic conditions is not fully understood. In this study, we found that hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3′ untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 enhanced apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples. These results suggest that miR-424 is a potential molecular target for tumor therapy.

69 citations

Journal ArticleDOI
TL;DR: HK2 regulated the protein level and T14 phosphorylation of CDK2, and knockdown of HK2 resulted in a G1 phase cell cycle arrest, suggesting that HK2 plays important roles in glycolysis regulation and in cell cycle checkpoint activation.

45 citations

Journal ArticleDOI
TL;DR: The study defines the NFAT4/ miR-324-5p/Mtfr1 axis, which participates in the regulation of mitochondrial fission and cardiomyocyte apoptosis, and suggests potential new treatment avenues for cardiac diseases.
Abstract: Emerging evidence suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction and heart failure. However, the molecular components regulating mitochondrial network in heart remain largely unidentified. Here we report that NFAT4, miR-324-5p and mitochondrial fission regulator 1 (Mtfr1) function in one signaling axis that regulates mitochondrial morphology and cardiomyocyte cell death. Knocking down Mtfr1 suppresses mitochondrial fission, apoptosis and myocardial infarction. Mtfr1 is a direct target of miR-324-5p, and miR-324-5p attenuates mitochondrial fission, cardiomyocyte apoptosis and myocardial infarction by suppressing Mtfr1 translation. Finally, we show that transcription factor NFAT4 inhibits miR-324-5p expression. Knockdown of NFAT4 suppresses mitochondrial fission and protects cardiomyocyte from apoptosis and myocardial infarction. Our study defines the NFAT4/ miR-324-5p/Mtfr1 axis, which participates in the regulation of mitochondrial fission and cardiomyocyte apoptosis, and suggests potential new treatment avenues for cardiac diseases.

40 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances in the understanding of miRNAs in cancer and in other diseases are described and the challenge of identifying the most efficacious therapeutic candidates is discussed and a perspective on achieving safe and targeted delivery of miRNA therapeutics is provided.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that can modulate mRNA expression. Insights into the roles of miRNAs in development and disease have led to the development of new therapeutic approaches that are based on miRNA mimics or agents that inhibit their functions (antimiRs), and the first such approaches have entered the clinic. This Review discusses the role of different miRNAs in cancer and other diseases, and provides an overview of current miRNA therapeutics in the clinic. In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.

3,210 citations

Journal ArticleDOI
TL;DR: Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components and have a role in creating extracellular matrix structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy.
Abstract: Cancer is associated with fibroblasts at all stages of disease progression. This Review discusses the pleiotropic actions of cancer-associated fibroblasts (CAFs) on tumour cells and postulates that they are likely to be a heterogeneous and plastic population of cells in the tumour microenvironment. Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.

2,597 citations

Journal ArticleDOI
TL;DR: How cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression is discussed; in particular, potential metabolic vulnerabilities that might be targeted therapeutically are highlighted.
Abstract: Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.

982 citations

Journal ArticleDOI
24 Jan 2018
TL;DR: The most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment are reviewed, and their role in cancer development and progression is summarised.
Abstract: Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxia-inducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology, the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process. Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment, and we summarise their role in cancer development and progression.

648 citations

Journal ArticleDOI
TL;DR: The focus of this review is on the remodeling of the tumor microenvironment that leads to pathophysiologic interactions that are influenced and shaped by metabolism.

552 citations