scispace - formally typeset
Search or ask a question
Author

Daria Mochly-Rosen

Bio: Daria Mochly-Rosen is an academic researcher from Stanford University. The author has contributed to research in topics: Protein kinase C & Aldehyde dehydrogenase. The author has an hindex of 92, co-authored 372 publications receiving 26620 citations. Previous affiliations of Daria Mochly-Rosen include University of California, San Francisco & Weizmann Institute of Science.


Papers
More filters
Journal ArticleDOI
14 Apr 1995-Science
TL;DR: Data indicate that the location of these anchoring proteins provides some of the specificity of the responses mediated by each kinase and suggest that inhibitors of the interaction between the kinases and their anchoring protein may be useful as therapeutic agents.
Abstract: A fundamental question in signal transduction is how stimulation of a specific protein kinase leads to phosphorylation of particular protein substrates throughout the cell. Recent studies indicate that specific anchoring proteins located at various sites in the cell compartmentalize the kinases to their sites of action. Inhibitors of the interactions between kinases and their anchoring proteins inhibit the functions mediated by the kinases. These data indicate that the location of these anchoring proteins provides some of the specificity of the responses mediated by each kinase and suggest that inhibitors of the interaction between the kinases and their anchoring proteins may be useful as therapeutic agents.

931 citations

Journal ArticleDOI
TL;DR: New ideas on mechanisms that regulate PKC activity, including the identification of a novel PKC kinase, 3-phosphoinositide-dependent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been advanced and opposing roles for selected isozymes in the same cell system have been defined.
Abstract: Individual protein kinase C (PKC) isozymes have been implicated in many cellular responses important in lung health and disease, including permeability, contraction, migration, hypertrophy, proliferation, apoptosis, and secretion. New ideas on mechanisms that regulate PKC activity, including the identification of a novel PKC kinase, 3-phosphoinositide-dependent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been advanced. The importance of targeted translocation of PKC and isozyme-specific binding proteins (like receptors for activated C-kinase and caveolins) is well established. Phosphorylation state and localization are now thought to be key determinants of isozyme activity and specificity. New concepts on the role of individual PKC isozymes in proliferation and apoptosis are emerging. Opposing roles for selected isozymes in the same cell system have been defined. Coupling to the Wnt signaling pathway has been described. Phenotypes for PKC knockout mice have recently been reported. More specific approaches for studying PKC isozymes and their role in cell responses have been developed. Strengths and weaknesses of different experimental strategies are reviewed. Future directions for investigation are identified.

741 citations

Journal ArticleDOI
TL;DR: Pitcher et al. as mentioned in this paper described the cloning of a cDNA encoding a 36-kDa protein (RACK1) that fulfills the criteria for RACKs.
Abstract: Protein kinase C (PKC) translocates from the soluble to the cell particulate fraction on activation. Intracellular receptors that bind activated PKC in the particulate fraction have been implicated by a number of studies. Previous work identified 30- to 36-kDa proteins in the particulate fraction of heart and brain that bound activated PKC in a specific and saturable manner. These proteins were termed receptors for activated C-kinase, or RACKs. In the following study, we describe the cloning of a cDNA encoding a 36-kDa protein (RACK1) that fulfills the criteria for RACKs. (i) RACK1 bound PKC in the presence of PKC activators, but not in their absence. (ii) PKC binding to the recombinant RACK1 was not inhibited by a pseudosubstrate peptide or by a substrate peptide derived from the pseudosubstrate sequence, indicating that the binding did not reflect simply PKC association with its substrate. (iii) Binding of PKC to RACK1 was saturable and specific; two other protein kinases did not bind to RACK1. (iv) RACK1 contains two short sequences homologous to a PKC binding sequence previously identified in annexin I and in the brain PKC inhibitor KCIP. Peptides derived from these sequences inhibited PKC binding to RACK1. Finally, RACK1 is a homolog of the beta subunit of G proteins, which were recently implicated in membrane anchorage of the beta-adrenergic receptor kinase [Pitcher, J., Inglese, L., Higgins, J. B., Arriza, J. A., Casey, P. J., Kim, C., Benovic, J. L., Kwatra, M. M., Caron, M. G. & Lefkowitz, R. J. (1992) Science 257, 1264-1267]. Our in vitro data suggest a role for RACK1 in PKC-mediated signaling.

711 citations

Journal ArticleDOI
12 Sep 2008-Science
TL;DR: Using an unbiased proteomic search, mitochondrial aldehyde dehydrogenase 2 (ALDH2) is identified as an enzyme whose activation correlates with reduced ischemic heart damage in rodent models and pharmacologic enhancement of ALDH2 activity may be useful for patients with wild-type or mutant AL DH2 who are subjected to cardiac ischemia.
Abstract: There is substantial interest in the development of drugs that limit the extent of ischemia-induced cardiac damage caused by myocardial infarction or by certain surgical procedures. Here, using an unbiased proteomic search, we identified mitochondrial aldehyde dehydrogenase 2 (ALDH2) as an enzyme whose activation correlates with reduced ischemic heart damage in rodent models. A high-throughput screen yielded a small-molecule activator of ALDH2 (Alda-1) that, when administered to rats before an ischemic event, reduced infarct size by 60%, most likely through its inhibitory effect on the formation of cytotoxic aldehydes. In vitro, Alda-1 was a particularly effective activator of ALDH2*2, an inactive mutant form of the enzyme that is found in 40% of East Asian populations. Thus, pharmacologic enhancement of ALDH2 activity may be useful for patients with wild-type or mutant ALDH2 who are subjected to cardiac ischemia, such as during coronary bypass surgery.

666 citations

Journal ArticleDOI
TL;DR: The proteins involved in the anchoring of PKC isozymes at specific subcellular sites, the domains in the PKCIsozymes that mediate protein-protein interaction with isozyme-specific anchoring proteins, and identification of peptides that interfere with or promote these protein- protein interactions, thus altering the localization and function of individual isoz enzymes are reviewed.
Abstract: Protein kinase C (PKC) isozymes comprise a family of related enzymes. There are only limited differences between these isozymes in substrate specificity or sensitivity to activators. However, there are multiple isozymes within a cell mediating isozyme-specific functions. Differential subcellular localization has been proposed to explain this specificity. When members of the PKC family are activated by lipid-derived second messengers, they translocate from one cell compartment to another. Isozyme specificity appears to be mediated in part by association of each PKC isozyme with specific anchoring proteins. This review will cover the proteins involved in the anchoring of PKC isozymes at specific subcellular sites, the domains in the PKC isozymes that mediate protein-protein interaction with isozyme-specific anchoring proteins, and identification of peptides that interfere with or promote these protein-protein interactions, thus altering the localization and function of individual isozymes.

595 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.

5,937 citations

Journal ArticleDOI
25 Aug 1988-Nature
TL;DR: Protein kinase C is now known to be a large family of proteins, with multiple subspecies that have subtle individual enzymological characteristics, and probably have distinct functions in the processing and modulation of a variety of physiological and pathological responses to external signals.
Abstract: Protein kinase C is now known to be a large family of proteins, with multiple subspecies that have subtle individual enzymological characteristics. Some members of the family exhibit distinct patterns of tissue expression and intracellular localization; different kinases probably have distinct functions in the processing and modulation of a variety of physiological and pathological responses to external signals.

4,107 citations

Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations