scispace - formally typeset
Search or ask a question
Author

Darinka Dentcheva

Bio: Darinka Dentcheva is an academic researcher from Stevens Institute of Technology. The author has contributed to research in topics: Stochastic optimization & Stochastic dominance. The author has an hindex of 26, co-authored 76 publications receiving 4579 citations. Previous affiliations of Darinka Dentcheva include Bulgarian Academy of Sciences & Humboldt University of Berlin.


Papers
More filters
Book
24 Sep 2009
TL;DR: The authors dedicate this book to Julia, Benjamin, Daniel, Natan and Yael; to Tsonka, Konstatin and Marek; and to the Memory of Feliks, Maria, and Dentcho.
Abstract: List of notations Preface to the second edition Preface to the first edition 1. Stochastic programming models 2. Two-stage problems 3. Multistage problems 4. Optimization models with probabilistic constraints 5. Statistical inference 6. Risk averse optimization 7. Background material 8. Bibliographical remarks Bibliography Index.

2,443 citations

Book
08 Jul 2014
TL;DR: The authors introduce new material to reflect recent developments in stochastic programming, including an analytical description of the tangent and normal cones of chance constrained sets and in-depth analysis of dynamic risk measures and concepts of time consistency.
Abstract: Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. In Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results. Audience: This book is intended for researchers working on theory and applications of optimization. It also is suitable as a text for advanced graduate courses in optimization.

366 citations

Journal ArticleDOI
TL;DR: Stochastic optimization problems involving stochastic dominance constraints are introduced and necessary and sufficient conditions of optimality and duality theory are developed and it is shown that the Lagrange multipliers corresponding to dominance constraint are concave nondecreasing utility functions.
Abstract: We introduce stochastic optimization problems involving stochastic dominance constraints. We develop necessary and sufficient conditions of optimality and duality theory for these models and show that the Lagrange multipliers corresponding to dominance constraints are concave nondecreasing utility functions. The models and results are illustrated on a portfolio optimization problem.

327 citations

Journal ArticleDOI
TL;DR: The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations and the concept of r-concave discrete probability distributions is introduced.
Abstract: We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples.

219 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the problem of constructing a portfolio of finitely many assets whose return rates are described by a discrete joint distribution and propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return rate.
Abstract: We consider the problem of constructing a portfolio of finitely many assets whose return rates are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return rate. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration is provided.

194 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Book
01 Jan 2015
TL;DR: The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way in an advanced undergraduate or beginning graduate course.
Abstract: Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.

3,857 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Book
24 Sep 2009
TL;DR: The authors dedicate this book to Julia, Benjamin, Daniel, Natan and Yael; to Tsonka, Konstatin and Marek; and to the Memory of Feliks, Maria, and Dentcho.
Abstract: List of notations Preface to the second edition Preface to the first edition 1. Stochastic programming models 2. Two-stage problems 3. Multistage problems 4. Optimization models with probabilistic constraints 5. Statistical inference 6. Risk averse optimization 7. Background material 8. Bibliographical remarks Bibliography Index.

2,443 citations