scispace - formally typeset
Search or ask a question
Author

Darold E. Ward

Bio: Darold E. Ward is an academic researcher from United States Forest Service. The author has contributed to research in topics: Combustion & Smoke. The author has an hindex of 39, co-authored 53 publications receiving 7192 citations. Previous affiliations of Darold E. Ward include United States Department of Agriculture & University of the Witwatersrand.
Topics: Combustion, Smoke, Trace gas, Methane, Carbon dioxide


Papers
More filters
Journal ArticleDOI
TL;DR: The National Aeronautic and Space Administration (NASA) plans to launch the moderate resolution imaging spectroradiometer (MODIS) on the polarorbiting Earth Observation System (EOS) providing morning and evening global observations in 1999 and afternoon and night observations in 2000 as discussed by the authors.
Abstract: The National Aeronautic and Space Administration (NASA) plans to launch the moderate resolution imaging spectroradiometer (MODIS) on the polarorbiting Earth Observation System (EOS) providing morning and evening global observations in 1999 and afternoon and night observations in 2000. These four MODIS daily fire observations will advance global fire monitoring with special 1 km resolution fire channels at 4 and 11 μm, with high saturation of about 450 and 400 K, respectively. MODIS data will also be used to monitor burn scars, vegetation type and condition, smoke aerosols, water vapor, and clouds for overall monitoring of the fire process and its effects on ecosystems, the atmosphere, and the climate. The MODIS fire science team is preparing algorithms that use the thermal signature to separate the fire signal from the background signal. A database of active fire products will be generated and archived at a 1 km resolution and summarized on a grid of 10 km and 0.5°, daily, 8 days, and monthly. It includes the fire occurrence and location, the rate of emission of thermal energy from the fire, and a rough estimate of the smoldering/flaming ratio. This information will be used in monitoring the spatial and temporal distribution of fires in different ecosystems, detecting changes in fire distribution and identifying new fire frontiers, wildfires, and changes in the frequency of the fires or their relative strength. We plan to combine the MODIS fire measurements with a detailed diurnal cycle of the fires from geostationary satellites. Sensitivity studies and analyses of aircraft and satellite data from the Yellowstone wildfire of 1988 and prescribed fires in the Smoke, Clouds, and Radiation (SCAR) aircraft field experiments are used to evaluate and validate the fire algorithms and to establish the relationship between the fire thermal properties, the rate of biomass consumption, and the emissions of aerosol and trace gases from fires.

658 citations

Journal ArticleDOI
TL;DR: In this article, trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types, including coal, rice straw, methanol, and acetic acid.
Abstract: Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH 4 , NH 3 , HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.

404 citations

Journal ArticleDOI
TL;DR: In this paper, the results from smoldering combustion during 24 fires are presented including production of carbon dioxide, carbon monoxide, methane, ethene, ethyne, propene, formaldehyde, 2-hydroxyethanal, methanol, phenol, acetic acid, formic acid, ammonia, hydrogen cyanide, and carbonyl sulfide.
Abstract: Biomass samples from a diverse range of ecosystems were burned in the Intermountain Fire Sciences Laboratory open combustion facility. Midinfrared spectra of the nascent emissions were acquired at several heights above the fires with a Fourier transform infrared spectrometer (FTIR) coupled to an open multipass cell. In this report, the results from smoldering combustion during 24 fires are presented including production of carbon dioxide, carbon monoxide, methane, ethene, ethyne, propene, formaldehyde, 2-hydroxyethanal, methanol, phenol, acetic acid, formic acid, ammonia, hydrogen cyanide, and carbonyl sulfide. These were the dominant products observed, and many have significant influence on atmospheric chemistry at the local, regional, and global scale. Included in these results are the first optical, in situ measurements of smoke composition from fires in grasses, hardwoods, and organic soils. About one half of the detected organic emissions arose from fuel pyrolysis which produces white smoke rich in oxygenated organic compounds. These compounds deserve more attention in the assessment of fire impacts on the atmosphere. The compound 2-hydroxyethanal is a significant component of the smoke, and it is reported here for the first time as a product of fires. Most of the observed alkane and ammonia production accompanied visible glowing combustion. NH3 is normally the major nitrogen-containing emission detected from smoldering combustion of biomass, but from some smoldering organic soils, HCN was dominant. Tar condensed on cool surfaces below the fires accounting for ∼1% of the biomass burned, but it was enriched in N by a factor of 6–7 over the parent material, and its possible role in postfire nutrient cycling should be further investigated.

363 citations

Journal ArticleDOI
TL;DR: In this paper, a series of nine large-scale, open fires was conducted in the Intermountain Fire Sciences Laboratory (IFSL) controlled-environment combustion facility, and mid-infrared spectra of the smoke were recorded throughout each fire by open path Fourier transform infrared (FTIR) spectroscopy at 0.12 cm−1 resolution over a 3 m cross-stack pathlength and analyzed to provide pseudocontinuous, simultaneous concentrations of up to 16 compounds.
Abstract: A series of nine large-scale, open fires was conducted in the Intermountain Fire Sciences Laboratory (IFSL) controlled-environment combustion facility. The fuels were pure pine needles or sagebrush or mixed fuels simulating forest-floor, ground fires; crown fires; broadcast burns; and slash pile burns. Mid-infrared spectra of the smoke were recorded throughout each fire by open path Fourier transform infrared (FTIR) spectroscopy at 0.12 cm−1 resolution over a 3 m cross-stack pathlength and analyzed to provide pseudocontinuous, simultaneous concentrations of up to 16 compounds. Simultaneous measurements were made of fuel mass loss, stack gas temperature, and total mass flow up the stack. The products detected are classified by the type of process that dominates in producing them. Carbon dioxide is the dominant emission of (and primarily produced by) flaming combustion, from which we also measure nitric oxide, nitrogen dioxide, sulfur dioxide, and most of the water vapor from combustion and fuel moisture. Carbon monoxide is the dominant emission formed primarily by smoldering combustion from which we also measure carbon dioxide, methane, ammonia, and ethane. A significant fraction of the total emissions is unoxidized pyrolysis products; examples are methanol, formaldehyde, acetic and formic acid, ethene (ethylene), ethyne (acetylene), and hydrogen cyanide. Relatively few previous data exist for many of these compounds and they are likely to have an important but as yet poorly understood role in plume chemistry. Large differences in emissions occur from different fire and fuel types, and the observed temporal behavior of the emissions is found to depend strongly on the fuel bed and product type.

353 citations

Journal ArticleDOI
TL;DR: The smoke, clouds, and radiation-Brazil (SCAR-B) field project as mentioned in this paper has been used to study biomass burning, emphasizing measurements of surface biomass, fires, smoke aerosol and trace gases, clouds and radiation.
Abstract: The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed for deriving the absorption and refractive index of smoke from ground-based remote sensing. Future spaceborne radiometers (e.g., MODIS on the Earth Observing System), simulated on aircraft, proved to be very useful for monitoring smoke properties, surface properties, and the impacts of smoke on radiation and climate.

345 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change and left unchecked, they will influence these other forces in profound but still unpredictable ways.
Abstract: Biotic invaders are species that establish a new range in which they proliferate, spread, and persist to the detriment of the environment. They are the most important ecological outcomes from the unprecedented alterations in the distribution of the earth's biota brought about largely through human transport and commerce. In a world without borders, few if any areas remain sheltered from these im- migrations. The fate of immigrants is decidedly mixed. Few survive the hazards of chronic and stochastic forces, and only a small fraction become naturalized. In turn, some naturalized species do become invasive. There are several potential reasons why some immigrant species prosper: some escape from the constraints of their native predators or parasites; others are aided by human-caused disturbance that disrupts native communities. Ironically, many biotic invasions are apparently facilitated by cultivation and husbandry, unintentional actions that foster immigrant populations until they are self-perpetuating and uncontrollable. Whatever the cause, biotic invaders can in many cases inflict enormous environmental damage: (1) Animal invaders can cause extinctions of vulnerable native species through predation, grazing, competition, and habitat alteration. (2) Plant invaders can completely alter the fire regime, nutrient cycling, hydrology, and energy budgets in a native ecosystem and can greatly diminish the abundance or survival of native species. (3) In agriculture, the principal pests of temperate crops are nonindigenous, and the combined expenses of pest control and crop losses constitute an onerous "tax" on food, fiber, and forage production. (4) The global cost of virulent plant and animal diseases caused by parasites transported to new ranges and presented with susceptible new hosts is currently incalculable. Identifying future invaders and taking effective steps to prevent their dispersal and establishment con- stitutes an enormous challenge to both conservation and international commerce. Detection and management when exclusion fails have proved daunting for varied reasons: (1) Efforts to identify general attributes of future invaders have often been inconclusive. (2) Predicting susceptible locales for future invasions seems even more problematic, given the enormous differences in the rates of arrival among potential invaders. (3) Eradication of an established invader is rare, and control efforts vary enormously in their efficacy. Successful control, however, depends more on commitment and continuing diligence than on the efficacy of specific tools themselves. (4) Control of biotic invasions is most effective when it employs a long-term, ecosystem- wide strategy rather than a tactical approach focused on battling individual invaders. (5) Prevention of invasions is much less costly than post-entry control. Revamping national and international quarantine laws by adopting a "guilty until proven innocent" approach would be a productive first step. Failure to address the issue of biotic invasions could effectively result in severe global consequences, including wholesale loss of agricultural, forestry, and fishery resources in some regions, disruption of the ecological processes that supply natural services on which human enterprise depends, and the creation of homogeneous, impoverished ecosystems composed of cosmopolitan species. Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change. Left unchecked, they will influence these other forces in profound but still unpredictable ways.

6,195 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Abstract: A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research activities. Yet this information has not been readily accessible to the atmospheric chemistry community because it was scattered over a large number of publications and reported in numerous different units and reference systems. We have critically evaluated the presently available data and integrated these into a consistent format. On the basis of this analysis we present a set of emission factors for a large variety of species emitted from biomass fires. Where data were not available, we have proposed estimates based on appropriate extrapolation techniques. We have derived global estimates of pyrogenic emissions for important species emitted by the various types of biomass burning and compared our estimates with results from inverse modeling studies.

3,556 citations

Journal ArticleDOI

3,152 citations