scispace - formally typeset
Search or ask a question
Author

Darren M. Dawson

Bio: Darren M. Dawson is an academic researcher from Clemson University. The author has contributed to research in topics: Control theory & Adaptive control. The author has an hindex of 61, co-authored 414 publications receiving 15506 citations. Previous affiliations of Darren M. Dawson include University of Texas at Arlington & Oak Ridge National Laboratory.


Papers
More filters
Book
01 Mar 1993
TL;DR: Control of robot manipulators , Control of robot Manipulators , مرکز فناوری اطلاعات و £1,000,000; اوشاوρز رسانی, کسورزی;
Abstract: Control of robot manipulators , Control of robot manipulators , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,146 citations

Book
12 Dec 2003
TL;DR: This thoroughly up-to-date Second Edition of Robot Manipulator Control explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers.
Abstract: Robot Manipulator Control offers a complete survey of control systems for serial-link robot arms and acknowledges how robotic device performance hinges upon a well-developed control system. Containing over 750 essential equations, this thoroughly up-to-date Second Edition, the book explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers. It also addresses procedures and issues in computed-torque, robust, adaptive, neural network, and force control. New chapters relay practical information on commercial robot manipulators and devices and cutting-edge methods in neural network control.

862 citations

Journal ArticleDOI
TL;DR: A new continuous control mechanism that compensates for uncertainty in a class of high-order, multiple-input-multiple-output nonlinear systems is presented and a new Lyapunov-based stability argument is employed to prove semiglobal asymptotic tracking.
Abstract: In this note, we present a new continuous control mechanism that compensates for uncertainty in a class of high-order, multiple-input-multiple-output nonlinear systems. The control strategy is based on limited assumptions on the structure of the system nonlinearities. A new Lyapunov-based stability argument is employed to prove semiglobal asymptotic tracking.

559 citations

Proceedings ArticleDOI
15 May 2006
TL;DR: The results of field trials and associated testing of the OctArm series of multi-section continuous backbone "continuum" robots have been described, in which the manipulators demonstrated the ability for adaptive and novel manipulation in challenging environments.
Abstract: This paper describes the results of field trials and associated testing of the OctArm series of multi-section continuous backbone "continuum" robots. This novel series of manipulators has recently (Spring 2005) undergone a series of trials including open-air and in-water field tests. Outcomes of the trials, in which the manipulators demonstrated the ability for adaptive and novel manipulation in challenging environments, are described. Implications for the deployment of continuum robots in a variety of applications are discussed

403 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of the robust control of the motion of rigid robots is presented, including linear-multivariable approach, passivity approach, variable-structure approach, saturation approach, and robust-adaptive approach.
Abstract: Current approaches to the robust control of the motion of rigid robots are surveyed, and the available literature is summarized. The five major design approaches discussed are the linear-multivariable approach, the passivity approach, the variable-structure approach, the saturation approach, and the robust-adaptive approach. Some guidelines for choosing a method are offered. >

391 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This Review discusses recent developments in the emerging field of soft robotics, and explores the design and control of soft-bodied robots composed of compliant materials.
Abstract: Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

3,824 citations

Journal ArticleDOI
TL;DR: Emerging soft-bodied robotic systems are reviewed to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments and to reduce the mechanical and algorithmic complexity involved in robot design.

1,604 citations

Journal ArticleDOI
TL;DR: This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific.
Abstract: Continuum robotics has rapidly become a rich and diverse area of research, with many designs and applications demonstrated. Despite this diversity in form and purpose, there exists remarkable similarity in the fundamental simplified kinematic models that have been applied to continuum robots. However, this can easily be obscured, especially to a newcomer to the field, by the different applications, coordinate frame choices, and analytical formalisms employed. In this paper we review several modeling approaches in a common frame and notational convention, illustrating that for piecewise constant curvature, they produce identical results. This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific. These mappings are then developed both for the single-section and for the multi-section case. Similarly, we discuss the decomposition of differential kinematics (the robotâ??s Jacobian) into robot-specific and robot-independent portions. The paper concludes with a perspective on several of the themes of current research that are shaping the future of continuum robotics.

1,600 citations