scispace - formally typeset
Search or ask a question
Author

Daryl D. Rowan

Other affiliations: Massey University, HortResearch
Bio: Daryl D. Rowan is an academic researcher from Plant & Food Research. The author has contributed to research in topics: Farnesene & Endophyte. The author has an hindex of 29, co-authored 91 publications receiving 3505 citations. Previous affiliations of Daryl D. Rowan include Massey University & HortResearch.
Topics: Farnesene, Endophyte, Population, Autoxidation, Malus


Papers
More filters
Journal ArticleDOI
TL;DR: The occurrence of the alkaloidsN-formyl andN-acetyl loline, peramine, lolitrem B, and ergovaline and the response of aphids to plants containing these compounds were determined in species and cultivars ofFestuca,Lolium, and other grass genera infected with fungal endophytes.
Abstract: The occurrence of the alkaloidsN-formyl andN-acetyl loline, peramine, lolitrem B, and ergovaline and the response of aphids to plants containing these compounds were determined in species and cultivars ofFestuca,Lolium, and other grass genera infected with fungal endophytes (Acremonium spp., andEpichloe typhina). Twenty-nine of 34 host-fungus associations produced one or more of the alkaloids, most frequently peramine or ergovaline. Three alkaloids (lolines, peramine, and ergovaline) were found in tall fescue and in perennial ryegrass infected withA. coenophialum, while peramine, lolitrem B, and ergovaline were present in perennial ryegrass and in tall fescue infected withA. lolii and inF. longifolia infected withE. typhina. WhileA. coenophialum andA. lolii produced similar patterns of alkaloids regardless of the species or cultivar of grass they infected, isolates ofE. typhina produced either no alkaloids or only one or two different alkaloids in the grasses tested. Aphid bioassays indicated thatRhopalosiphum padi andSchizaphis graminum did not survive on grasses containing loline alkaloids and thatS. graminum did not survive on peramine-containing grasses. Ergovaline-containing grasses did not affect either aphid.

392 citations

Journal ArticleDOI
TL;DR: It is proposed that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocianin regulatory complex.
Abstract: The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus × domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.

299 citations

Journal ArticleDOI
TL;DR: High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration, suggesting the action of additional anthocyan in regulators.
Abstract: * High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration, suggesting the action of additional anthocyanin regulators. High-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LCMS) and Affimetrix-based microarrays were used to measure changes in anthocyanin, flavonoids, and gene expression in response to HTLL. * HTLL treatment of control and 35S:PAP1 A. thaliana resulted in a reversible reduction in the concentrations of major anthocyanins despite ongoing over-expression of the PAP1 MYB transcription factor. Twenty-one anthocyanins including eight cis-coumaryl esters were identified by LCMS. The concentrations of nine anthocyanins were reduced and those of three were increased, consistent with a sequential process of anthocyanin degradation. Analysis of gene expression showed down-regulation of flavonol and anthocyanin biosynthesis and of transport-related genes within 24 h of HTLL treatment. No catabolic genes up-regulated by HTLL were found. * Reductions in the concentrations of anthocyanins and down-regulation of the genes of anthocyanin biosynthesis were achieved by environmental manipulation, despite ongoing over-expression of PAP1. Quantitative PCR showed reduced expression of three genes (TT8, TTG1 and EGL3) of the PAP1 transcriptional complex, and increased expression of the potential transcriptional repressors AtMYB3, AtMYB6 and AtMYBL2 coincided with HTLL-induced down-regulation of anthocyanin biosynthesis. * HTLL treatment offers a model system with which to explore anthocyanin catabolism and to discover novel genes involved in the environmental control of anthocyanins.

227 citations

Journal ArticleDOI
TL;DR: Alkaloid production in the natural host grass-Acremonium associations proved a useful taxonomic criterion, with the profile of alkaloids being consistent in the host plants for all isolate within a single isozyme phenotype and for most isolates within a taxonomic grouping.

225 citations

Journal ArticleDOI
TL;DR: It is suggested that ryegrass staggers and stem weevil feeding deterrency may arise by different biochemical mechanisms.
Abstract: Infection of ryegrass (Lolium perenne) by an endophytic fungus (Acremonium loliae) confers resistance against the Argentine stem weevil (Listronotus bonariensis). Extracts from ryegrass clones, infected and uninfected with A. loliae, were compared in a feeding choice bioassay, and several fractions were identified which affected stem weevil feeding behavior. One stem weevil feeding deterrent, peramine C12H17N5O, has been isolated from infected ryegrass and partially characterized as a basic indole derivative. Extracts from culturedA. loliae had no effect on stem weevil feeding behavior nor was peramine detected in the fungal cultures examined. Peramine and the other active substances are hydrophilic in contrast to the lipophilic properties reported for the neurotoxic lolitrems also isolated from ryegrass infected with A. loliae and associated with causing ryegrass staggers disorder in livestock. It is suggested that ryegrass staggers and stem weevil feeding deterrency may arise by different biochemical mechanisms.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts, and key questions for future work in endophyte biology are highlighted.
Abstract: Summary 1 Summary All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

2,278 citations

Journal ArticleDOI
TL;DR: This review addresses the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Abstract: All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

1,677 citations

Journal ArticleDOI
TL;DR: The potential of one- and two-dimensional NMR techniques for the identification of individual sugar residues, their anomeric configuration, interglycosidic linkages, sequencing and the site of any appended group in establishing the structures of naturally occurring oligosaccharides and glycosides is presented.

1,317 citations

Journal ArticleDOI
TL;DR: In this paper, a compilation of the 13C NMR data of a selected variety of naturally occurring pentacyclic triterpenoids, arranged skeletonwise, is provided.

1,251 citations

Journal ArticleDOI
TL;DR: It is concluded that floral scent chemistry is of little use for phylogenetic estimates above the genus level, whereas the distribution and combinations of floral scent compounds at species and subspecific levels is a promising field of investigation for the understanding of adaptations and evolutionary processes in angiosperms.
Abstract: A list of 1719 chemical compounds identified from headspace samples of floral scent is presented. The list has been compiled from some 270 published papers, including analyses of 991 species of flowering plants and a few gymnosperms, a sample including seed plants from 90 families and 38 orders. The compounds belong to seven major compound classes, of which the aliphatics, the benzenoids and phenylpropanoids, and, among the terpenes, the mono- and sesquiterpenes, occur in most orders of seeds plants. C5-branched compounds, irregular terpenes, nitrogen-containing compounds, and a class of miscellaneous cyclic compounds have been recorded in about two-thirds of the orders. Sulfur-containing compounds occur in a third of the orders, whereas diterpenes have been reported from three orders only. The most common single compounds in floral scent are the monoterpenes limonene, (E)-β-ocimene, myrcene, linalool, α- and β-pinene, and the benzenoids benzaldehyde, methyl 2-hydroxybenzoate (methyl salicylate), benzyl alcohol, and 2-phenyl ethanol, which occur in 54–71% of the families investigated so far. The sesquiterpene caryophyllene and the irregular terpene 6-methyl-5-hepten-2-one are also common and occur in more than 50% of the families. Orchidaceae are by far the best investigated family, followed by several families known to have many species with strongly scented flowers, such as Araceae, Arecaceae, Magnoliaceae, and Rosaceae. However, the majority of angiosperm families are still poorly investigated. Relationships between floral scent and pollination, chemistry, evolution, and phylogeny are briefly discussed. It is concluded that floral scent chemistry is of little use for phylogenetic estimates above the genus level, whereas the distribution and combinations of floral scent compounds at species and subspecific levels is a promising field of investigation for the understanding of adaptations and evolutionary processes in angiosperms.

1,172 citations