scispace - formally typeset
Search or ask a question

Showing papers by "Daryoosh Vashaee published in 2010"


Journal ArticleDOI
TL;DR: In this article, the porosity effects on electron and phonon transport were modeled to predict and explain thermoelectric properties in porous nanograined materials, and the modeling results showed that the charge carriers are scattered more severely in nanoglarned materials than the macroscale porous materials, due to a higher number density of scattering sites.
Abstract: The recent achievement of the high thermoelectric figure of merit in nanograined materials is attributed to the successful optimization of the consolidation process. Despite a thermal conductivity reduction, it has been experimentally observed that the porous nanograined materials have lower thermoelectric figure of merit than their bulk counterpart due to significant reduction in the electrical conductivity. In this paper, nanoscale porosity effects on electron and phonon transport are modeled to predict and explain thermoelectricproperties in porous nanograined materials.Electron scattering at the pores is treated quantum mechanically while phonon transport is treated using a classical picture. The modeling results show that the charge carriers are scattered more severely in nanograined materials than the macroscale porous materials, due to a higher number density of scattering sites. Porous nanograined materials have enhanced Seebeck coefficient due to energy filtering effect and low thermal conductivity, which are favorable for thermoelectric applications. However, the benefit is not large enough to overcome the deficit in the electrical conductivity, so that a high sample density is necessary for nanograined SiGe.

191 citations