scispace - formally typeset
Search or ask a question
Author

David A. Thorn

Bio: David A. Thorn is an academic researcher from University at Buffalo. The author has contributed to research in topics: Imidazoline receptor & Agonist. The author has an hindex of 12, co-authored 22 publications receiving 448 citations. Previous affiliations of David A. Thorn include Food and Drug Administration & Research Triangle Park.

Papers
More filters
Journal ArticleDOI
TL;DR: The first systematic assessment of a TAAR 1 agonist on a range of behavioral effects of cocaine, showing that RO5263397 was efficacious in reducing cocaine-mediated behaviors is reported, and essential neuromodulatory roles of TAar 1 on cocaine abuse are uncovered.

71 citations

Journal ArticleDOI
TL;DR: Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain and reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair.
Abstract: Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a+O4+ cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.

55 citations

Journal ArticleDOI
TL;DR: These data represent the first to report a critical modulatory role of TAAR 1 agonists in cocaine-induced behavioral plasticity, which may be indicative of its potential role for altering other long-lasting behavioral maladaptations of cocaine including drug addiction.

45 citations

Journal ArticleDOI
TL;DR: A new imidazoline I2 receptor ligand, CR4056, is effective for chronic inflammatory pain and diabetic neuropathy, but it is unclear whether other I 2 receptor ligands have similar effects and whether antinociceptive tolerance develops with repeated treatment.
Abstract: Background and Purpose A new imidazoline I2 receptor ligand, CR4056, is effective for chronic inflammatory pain and diabetic neuropathy. However, it is unclear whether other I2 receptor ligands have similar effects and whether antinociceptive tolerance develops with repeated treatment. Experimental Approach The Von Frey filament test was used to measure mechanical hyperalgesia and the plantar test to measure thermal hyperalgesia in rats injected with complete Freund's adjuvant (CFA) treatment or had undergone surgery to induce chronic constriction injury (CCI), models of inflammatory pain and peripheral neuropathic pain respectively. The effects of morphine and I2 receptor ligands, 2-BFI, BU224, tracizoline and CR4056, 3.2–32 mg·kg−1, i.p., on hyperalgesia or affective pain (as measured by a place escape/avoidance paradigm) were studied in separate experiments. Key Results Morphine and the I2 receptor ligands (2-BFI, BU224 and tracizoline) all dose-dependently attenuated mechanical and thermal hyperalgesia in CFA-treated rats. The anti-hyperalgesic effects of 2-BFI in CFA-treated and CCI rats were attenuated by the I2 receptor antagonist idazoxan. The combination of 2-BFI and morphine produced additive effects against mechanical hyperalgesia in CFA-treated rats. Repeated treatment (daily for 7–9 days) with 2-BFI or CR4056 did not produce antinociceptive tolerance in CFA-treated or CCI rats. Morphine and the I2 receptor ligands (2-BFI, BU224 and CR4056) were all effective at attenuating place escape/avoidance behaviour in CFA-treated rats. Conclusions and Implications Imidazoline I2 receptor ligands have antihyperalgesic effects in rat models of inflammatory and neuropathic pain and may represent a new class of pharmacotherapeutics for the management of chronic pain.

44 citations

Journal ArticleDOI
TL;DR: It is suggested that BU224 has lower efficacy than 2-BFI at I₂ receptors, and that the enhancement of opioid antinociception by I ₂ receptor ligands depends on their efficacies.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Evidence from behavioral neurology thatwhite matter lesions regularly disturb cognition is presented, the role of white matter in the physiology of distributed neural networks is considered, the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, and emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders are discussed.
Abstract: Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society.

233 citations

DissertationDOI
03 Dec 2007

228 citations

Journal ArticleDOI
TL;DR: There was sufficient evidence supporting an association between developmental PBDE exposure and reduced IQ, and the body of evidence was of “moderate” quality for ADHD with “limited” evidence for an association with PBDEs.
Abstract: Background: In the United States, one in six children are affected by neurodevelopmental disorders, and polybrominated diphenyl ethers (PBDEs) in flame-retardant chemicals are measured ubiquitously...

224 citations

Journal ArticleDOI
TL;DR: In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction, and in the periphery,TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a Novel therapeutic targets for diabetes and obesity.
Abstract: Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.

208 citations

Journal ArticleDOI
TL;DR: The systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Abstract: It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.

194 citations