scispace - formally typeset
Search or ask a question
Author

David Altshuler

Bio: David Altshuler is an academic researcher from University of Michigan. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 162, co-authored 345 publications receiving 201782 citations. Previous affiliations of David Altshuler include Vertex Pharmaceuticals & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations

Journal ArticleDOI
John W. Belmont1, Paul Hardenbol, Thomas D. Willis, Fuli Yu1, Huanming Yang2, Lan Yang Ch'Ang, Wei Huang3, Bin Liu2, Yan Shen3, Paul K.H. Tam4, Lap-Chee Tsui4, Mary M.Y. Waye5, Jeffrey Tze Fei Wong6, Changqing Zeng2, Qingrun Zhang2, Mark S. Chee7, Luana Galver7, Semyon Kruglyak7, Sarah S. Murray7, Arnold Oliphant7, Alexandre Montpetit8, Fanny Chagnon8, Vincent Ferretti8, Martin Leboeuf8, Michael S. Phillips8, Andrei Verner8, Shenghui Duan9, Denise L. Lind10, Raymond D. Miller9, John P. Rice9, Nancy L. Saccone9, Patricia Taillon-Miller9, Ming Xiao10, Akihiro Sekine, Koki Sorimachi, Yoichi Tanaka, Tatsuhiko Tsunoda, Eiji Yoshino, David R. Bentley11, Sarah E. Hunt11, Don Powell11, Houcan Zhang12, Ichiro Matsuda13, Yoshimitsu Fukushima14, Darryl Macer15, Eiko Suda15, Charles N. Rotimi16, Clement Adebamowo17, Toyin Aniagwu17, Patricia A. Marshall18, Olayemi Matthew17, Chibuzor Nkwodimmah17, Charmaine D.M. Royal16, Mark Leppert19, Missy Dixon19, Fiona Cunningham20, Ardavan Kanani20, Gudmundur A. Thorisson20, Peter E. Chen21, David J. Cutler21, Carl S. Kashuk21, Peter Donnelly22, Jonathan Marchini22, Gilean McVean22, Simon Myers22, Lon R. Cardon22, Andrew P. Morris22, Bruce S. Weir23, James C. Mullikin24, Michael Feolo24, Mark J. Daly25, Renzong Qiu26, Alastair Kent, Georgia M. Dunston16, Kazuto Kato27, Norio Niikawa28, Jessica Watkin29, Richard A. Gibbs1, Erica Sodergren1, George M. Weinstock1, Richard K. Wilson9, Lucinda Fulton9, Jane Rogers11, Bruce W. Birren25, Hua Han2, Hongguang Wang, Martin Godbout30, John C. Wallenburg8, Paul L'Archevêque, Guy Bellemare, Kazuo Todani, Takashi Fujita, Satoshi Tanaka, Arthur L. Holden, Francis S. Collins24, Lisa D. Brooks24, Jean E. McEwen24, Mark S. Guyer24, Elke Jordan31, Jane Peterson24, Jack Spiegel24, Lawrence M. Sung32, Lynn F. Zacharia24, Karen Kennedy29, Michael Dunn29, Richard Seabrook29, Mark Shillito, Barbara Skene29, John Stewart29, David Valle21, Ellen Wright Clayton33, Lynn B. Jorde19, Aravinda Chakravarti21, Mildred K. Cho34, Troy Duster35, Troy Duster36, Morris W. Foster37, Maria Jasperse38, Bartha Maria Knoppers39, Pui-Yan Kwok10, Julio Licinio40, Jeffrey C. Long41, Pilar N. Ossorio42, Vivian Ota Wang33, Charles N. Rotimi16, Patricia Spallone29, Patricia Spallone43, Sharon F. Terry44, Eric S. Lander25, Eric H. Lai45, Deborah A. Nickerson46, Gonçalo R. Abecasis41, David Altshuler47, Michael Boehnke41, Panos Deloukas11, Julie A. Douglas41, Stacey Gabriel25, Richard R. Hudson48, Thomas J. Hudson8, Leonid Kruglyak49, Yusuke Nakamura50, Robert L. Nussbaum24, Stephen F. Schaffner25, Stephen T. Sherry24, Lincoln Stein20, Toshihiro Tanaka 
18 Dec 2003-Nature
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Abstract: The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.

5,926 citations

Journal ArticleDOI
21 Jun 2002-Science
TL;DR: It is shown that the human genome can be parsed objectively into haplotype blocks: sizable regions over which there is little evidence for historical recombination and within which only a few common haplotypes are observed.
Abstract: Haplotype-based methods offer a powerful approach to disease gene mapping, based on the association between causal mutations and the ancestral haplotypes on which they arose. As part of The SNP Consortium Allele Frequency Projects, we characterized haplotype patterns across 51 autosomal regions (spanning 13 megabases of the human genome) in samples from Africa, Europe, and Asia. We show that the human genome can be parsed objectively into haplotype blocks: sizable regions over which there is little evidence for historical recombination and within which only a few common haplotypes are observed. The boundaries of blocks and specific haplotypes they contain are highly correlated across populations. We demonstrate that such haplotype frameworks provide substantial statistical power in association studies of common genetic variation across each region. Our results provide a foundation for the construction of a haplotype map of the human genome, facilitating comprehensive genetic association studies of human disease.

5,634 citations

Journal ArticleDOI
John W. Belmont1, Andrew Boudreau, Suzanne M. Leal1, Paul Hardenbol  +229 moreInstitutions (40)
27 Oct 2005
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Abstract: Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

5,479 citations

Journal ArticleDOI
TL;DR: This unit describes how to use BWA and the Genome Analysis Toolkit to map genome sequencing data to a reference and produce high‐quality variant calls that can be used in downstream analyses.
Abstract: This unit describes how to use BWA and the Genome Analysis Toolkit (GATK) to map genome sequencing data to a reference and produce high-quality variant calls that can be used in downstream analyses. The complete workflow includes the core NGS data processing steps that are necessary to make the raw data suitable for analysis by the GATK, as well as the key methods involved in variant discovery using the GATK.

5,150 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: This work introduces PLINK, an open-source C/C++ WGAS tool set, and describes the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation, which focuses on the estimation and use of identity- by-state and identity/descent information in the context of population-based whole-genome studies.
Abstract: Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.

26,280 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations