scispace - formally typeset
Search or ask a question
Author

David B. Baker

Bio: David B. Baker is an academic researcher from Heidelberg University (Ohio). The author has contributed to research in topics: Tributary & Nonpoint source pollution. The author has an hindex of 27, co-authored 52 publications receiving 4323 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an expert panel was convened to conduct a comprehensive aquatic ecological risk assessment based on several newly suggested procedures and included exposure and hazard subcomponents as well as the overall risk assessment.
Abstract: The triazine herbicide atrazine (2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine) is one of the most used pesticides in North America. Atrazine is principally used for control of certain annual broadleaf and grass weeds, primarily in corn but also in sorghum, sugarcane, and, to a lesser extent, other crops and landscaping. Atrazine is found in many surface and ground waters in North America, and aquatic ecological effects are a possible concern for the regulatory and regulated communities. To address these concerns an expert panel (the Panel) was convened to conduct a comprehensive aquatic ecological risk assessment. This assessment was based on several newly suggested procedures and included exposure and hazard subcomponents as well as the overall risk assessment. The Panel determined that use of probabilistic risk assessment techniques was appropriate. Here, the results of this assessment are presented as a case study for these techniques. The environmental exposure assessment concentrated on monitoring data from Midwestern watersheds, the area of greatest atrazine use in North America. This analysis revealed that atrazine concentrations rarely exceed 20 μg/L in rivers and streams that were the main focus of the aquatic ecological risk assessment. Following storm runoff, biota in lower-order streams may be exposed to pulses of atrazine greater than 20 μg/L, but these exposures are short-lived. The assessment also considered exposures in lakes and reservoirs. The principal data set was developed by the U.S. Geological Survey, which monitored residues in 76 Midwestern reservoirs in 11 states in 1992-1993. Residue concentrations in some reservoirs were similar to those in streams but persisted longer. Atrazine residues were widespread in reservoirs (92% occurrence), and the 90th percentile of this exposure distribution for early June to July was about 5 μg/L. Mathematical simulation models of chemical fate were used to generalize the exposure analysis to other sites and to assess the potential effects of reduction in the application rates. Models were evaluated, modified, and calibrated against available monitoring data to validate that these models could predict atrazine runoff. PRZM-2 overpredicted atrazine concentrations by about an order of magnitude, whereas GLEAMS underpredicted by a factor of 2 to 5. Thus, exposure models were not used to extrapolate to other regions of atrazine use in this assessment. The effects assessment considered both freshwater and saltwater toxicity test results. Phytoplankton were the most sensitive organisms, followed, in decreasing order of sensitivity, by macrophytes, benthic invertebrates, zooplankton, and fish. Atrazine inhibits photophosphorylation but typically does not result in lethality or permanent cell damage in the short term. This characteristic of atrazine required a different model than typically used for understanding the potential impact in aquatic systems, where lethality or nonreversible effects are usually assumed. In addition, recovery of phytoplankton from exposure to 5 to 20 μg/L atrazine was demonstrated. In some mesocosm field experiments, phytoplankton and macrophytes were reduced after atrazine exposures greater than 20 μg/L. However, populations were quickly reestablished, even while atrazine residues persisted in the water. Effects in field studies were judged to be ecologically important only at exposures of 50 μg/L or greater. Mesocosm experiments did not reveal disruption of either ecosystem structure or function at atrazine concentrations typically encountered in the environment (generally 5 μg/L or less). Based on an integration of laboratory bioassay data, field effects studies, and environmental monitoring data from watersheds in high-use areas in the Midwestern United States, the Panel concluded that atrazine does not pose a significant risk to the aquatic environment. Although some inhibitory effects on algae, phytoplankton, or macrophyte production may occur in small streams vulnerable to agricultural runoff, these effects are likely to be transient, and quick recovery of the ecological system is expected. A subset of surface waters, principally small reservoirs in areas with intensive use of atrazine, may be at greater risk of exposure to atrazine. Therefore, it is recommended that site-specific risk assessments be conducted at these sites to assess possible ecological effects in the context of the uses to which these ecosystems are put and the effectiveness and cost-benefit aspect of any risk mitigation measures that may be applied.

951 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a newly developed flashiness index, which is based on mean daily flows, calculated by dividing the pathlength of flow oscillations for a time interval (i.e., the sum of the absolute values of day-to-day changes in mean daily flow) by total discharge during that time interval.
Abstract: The term flashiness reflects the frequency and rapidi- ty of short term changes in streamflow, especially during runoff events Flashiness is an important component of a stream's hydro- logic regime A variety of land use and land management changes may lead to increased or decreased flashiness, often to the detri- ment of aquatic life This paper presents a newly developed flashi- ness index, which is based on mean daily flows The index is calculated by dividing the pathlength of flow oscillations for a time interval (ie, the sum of the absolute values of day-to-day changes in mean daily flow) by total discharge during that time interval This index has low interannual variability, relative to most flow regime indicators, and thus greater power to detect trends Index values were calculated for 515 Midwestern streams for the 27-year period from 1975 through 2001 Statistically significant increases were present in 22 percent of the streams, primarily in the eastern portion of the study area, while decreases were present in 9 per- cent, primarily in the western portion Index values tend to decrease with increasing watershed area and with increasing unit area ground water inputs Area compensated index values often shift at ecoregion boundaries Potential index applications include evaluation of programs to restore more natural flow regimes (KEY TERMS: stream flashiness; flashiness index; Indicators of Hydrological Alteration; surface water hydrology; watershed man- agement; stormwater management; agricultural hydrology)

523 citations

Journal ArticleDOI
01 Aug 2012-PLOS ONE
TL;DR: After a 20-year absence, severe cyanobacterial blooms have returned to Lake Erie in the last decade, in spite of negligible change in the annual load of total phosphorus (TP), according to medium-spectral Resolution Imaging Spectrometer (MERIS) imagery.
Abstract: After a 20-year absence, severe cyanobacterial blooms have returned to Lake Erie in the last decade, in spite of negligible change in the annual load of total phosphorus (TP). Medium-spectral Resolution Imaging Spectrometer (MERIS) imagery was used to quantify intensity of the cyanobacterial bloom for each year from 2002 to 2011. The blooms peaked in August or later, yet correlate to discharge (Q) and TP loads only for March through June. The influence of the spring TP load appears to have started in the late 1990 s, after Dreissenid mussels colonized the lake, as hindcasts prior to 1998 are inconsistent with the observed blooms. The total spring Q or TP load appears sufficient to predict bloom magnitude, permitting a seasonal forecast prior to the start of the bloom.

360 citations

Journal ArticleDOI
TL;DR: In this article, the authors present information on pesticide concentrations in Lake Erie tributaries draining agricultural watersheds, information distilled from data sets spanning nearly a decade and including up to 750 samples per tributary.
Abstract: This paper presents information on pesticide concentrations in Lake Erie tributaries draining agricultural watersheds, information distilled from data sets spanning nearly a decade and including up to 750 samples per tributary. Pesticide concentrations are strongly skewed and approximately lognormal. Average concentrations in tributaries are correlated with the amount applied in the basin, but with important secondary effects from chemical properties and modes of application of the pesticides. During runoff of storm events following application, concentrations rise rapidly, peak about the time of peak discharge, and decline slowly thereafter. These patterns do not match those for nutrients, major ions, or sediment, indicating a different pathway from the fields for pesticides. On an annual basis, elevated monthly average concentrations are usually observed from May to August, and low concentrations are present during the rest of the year. Monthly average concentrations of atrazine and alachlor generally exceed maximum contaminant levels (MCLs) in at least one month following application, but those of other herbicides do not. Annual averages are below MCLs for all compounds. No long-term trends are apparent. Comparisons of patterns in large and small tributaries show that small tributaries have higher maximum concentrations, more frequent concentrations below detection limit, and fewer intermediate concentrations. Smaller tributaries have more strongly skewed distributions and much greater temporal variability in concentrations than do larger rivers.

224 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used two long-term (>10-year) datasets to test whether Lake Erie total phytoplankton biomass and cyanobacterial biomass changed over time and whether phyto-ankton abundance was influenced by soluble reactive phosphorus or nitrate loading from agriculturally-dominated tributaries (Maumee and Sandusky rivers).

220 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: It is concluded that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses, and fundamental changes in chemical testing and safety determination are needed to protect human health.
Abstract: For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from...

2,475 citations

Journal ArticleDOI
TL;DR: A much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, can be much better translated to human health.
Abstract: The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.

1,423 citations

01 Jan 2001
TL;DR: The biotic ligand model of acute metal toxicity to aquatic organisms is based on the idea that mortality occurs when the metal-biotic ligand complex reaches a critical concentration, a generalization of the free ion activity model that relates toxicity to the concentration of the divalent metal cation.
Abstract: The biotic ligand model (BLM) of acute metal toxicity to aquatic organisms is based on the idea that mortality occurs when the metal-biotic ligand complex reaches a critical concentration. For fish, the biotic ligand is either known or suspected to be the sodium or calcium channel proteins in the gill surface that regulate the ionic composition of the blood. For other organisms, it is hypothesized that a biotic ligand exists and that mortality can be modeled in a similar way. The biotic ligand interacts with the metal cations in solution. The amount of metal that binds is determined by a competition for metal ions between the biotic ligand and the other aqueous ligands, particularly dissolved organic matter (DOM), and the competition for the biotic ligand between the toxic metal ion and the other metal cations in solution, for example, calcium. The model is a generalization of the free ion activity model that relates toxicity to the concentration of the divalent metal cation. The difference is the presence of competitive binding at the biotic ligand, which models the protective effects of other metal cations, and the direct influence of pH. The model is implemented using the Windermere humic aqueous model (WHAM) model of metal-DOM complexation. It is applied to copper and silver using gill complexation constants reported by R. Playle and coworkers. Initial application is made to the fathead minnow data set reported by R. Erickson and a water effects ratio data set by J. Diamond. The use of the BLM for determining total maximum daily loadings (TMDLs) and for regional risk assessments is discussed within a probabilistic framework. At first glance, it appears that a large amount of data are required for a successful application. However, the use of lognormal probability distributions reduces the required data to a manageable amount. Keywords—Bioavailability Metal toxicity Metal complexation Risk assessment

1,180 citations

Journal ArticleDOI
TL;DR: It is shown that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads.
Abstract: In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie.

1,176 citations