scispace - formally typeset
Search or ask a question
Author

David B. Bogy

Other affiliations: Rice University, Shell Oil Company, IBM  ...read more
Bio: David B. Bogy is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Slider & Air bearing. The author has an hindex of 48, co-authored 428 publications receiving 13260 citations. Previous affiliations of David B. Bogy include Rice University & Shell Oil Company.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed and analyzed the literature on thin carbon layers with emphasis on their use as protective overcoats for thin-film magnetic media, and discussed carbon as a material, its preparation as a thin film, and review and evaluate various techniques for characterizing its thinfilm properties.
Abstract: This paper reviews and analyzes the literature on thin carbon layers with emphasis on their use as protective overcoats for thin‐film magnetic media. We discuss carbon as a material, its preparation as a thin film, and review and evaluate various techniques for characterizing its thin‐film properties.

782 citations

Journal ArticleDOI
TL;DR: In this paper, a modele de calcul du coefficient de frottement statique dans le cas de surfaces rugueuses metalliques is presented, in particular, for surfaces of metallique surfaces.
Abstract: Modele de calcul du coefficient de frottement statique dans le cas de surfaces rugueuses metalliques

340 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Abstract: Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs).

5,400 citations

Journal ArticleDOI
TL;DR: The basic concepts behind plasmonics-enabled light concentration and manipulation are discussed, an attempt to capture the wide range of activities and excitement in this area is made, and possible future directions are speculated on.
Abstract: The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

3,953 citations

Book
01 Jan 1993
TL;DR: In this paper, the authors propose a theory which goes beyond the classical formulation of thermodynamics by enlarging the space of basic independent variables, through the introduction of non-equilibrium variables, such as the dissipative fluxes appearing in the balance equations.
Abstract: Our aim is to propose a theory which goes beyond the classical formulation of thermodynamics. This is achieved by enlarging the space of basic independent variables, through the introduction of non-equilibrium variables, such as the dissipative fluxes appearing in the balance equations. The next step is to find evolution equations for the dissipative fluxes. Whereas the evolution equations for the classical variables are given by the usual balance laws, no general criteria exist concerning the evolution equations of the dissipative fluxes, with the exception of the restrictions imposed on them by the second law of thermodynamics.

1,739 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical development of this field alongside recent experimental work, and outline unsolved problems, as well as a host of technological applications, ranging from printing to mixing and fiber spinning.
Abstract: Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems.

1,670 citations