scispace - formally typeset
Search or ask a question
Author

David B. Roy

Bio: David B. Roy is an academic researcher from Natural Environment Research Council. The author has contributed to research in topics: Biodiversity & Butterfly. The author has an hindex of 70, co-authored 250 publications receiving 26241 citations. Previous affiliations of David B. Roy include Rothamsted Research & University of Sheffield.


Papers
More filters
Journal ArticleDOI
19 Aug 2011-Science
TL;DR: A meta-analysis shows that species are shifting their distributions in response to climate change at an accelerating rate, and that the range shift of each species depends on multiple internal species traits and external drivers of change.
Abstract: The distributions of many terrestrial organisms are currently shifting in latitude or elevation in response to changing climate Using a meta-analysis, we estimated that the distributions of species have recently shifted to higher elevations at a median rate of 110 meters per decade, and to higher latitudes at a median rate of 169 kilometers per decade These rates are approximately two and three times faster than previously reported The distances moved by species are greatest in studies showing the highest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change Rapid average shifts derive from a wide diversity of responses by individual species

3,986 citations

Journal ArticleDOI
TL;DR: It is shown that a wide variety of vertebrate and invertebrate species have moved northwards and uphill in Britain over approximately 25 years, mirroring, and in some cases exceeding, the responses of better‐known groups.
Abstract: Evidence is accumulating of shifts in species' distributions during recent climate warming. However, most of this information comes predominantly from studies of a relatively small selection of taxa (i.e., plants, birds and butterflies), which may not be representative of biodiversity as a whole. Using data from less well-studied groups, we show that a wide variety of vertebrate and invertebrate species have moved northwards and uphill in Britain over approximately 25 years, mirroring, and in some cases exceeding, the responses of better-known groups.

1,392 citations

Journal ArticleDOI
01 Nov 2001-Nature
TL;DR: The dual forces of habitat modification and climate change are likely to cause specialists to decline, leaving biological communities with reduced numbers of species and dominated by mobile and widespread habitat generalists.
Abstract: Habitat degradation and climate change are thought to be altering the distributions and abundances of animals and plants throughout the world, but their combined impacts have not been assessed for any species assemblage1,2,3,4. Here we evaluated changes in the distribution sizes and abundances of 46 species of butterflies that approach their northern climatic range margins in Britain—where changes in climate and habitat are opposing forces. These insects might be expected to have responded positively to climate warming over the past 30 years, yet three-quarters of them declined: negative responses to habitat loss have outweighed positive responses to climate warming. Half of the species that were mobile and habitat generalists increased their distribution sites over this period (consistent with a climate explanation), whereas the other generalists and 89% of the habitat specialists declined in distribution size (consistent with habitat limitation). Changes in population abundances closely matched changes in distributions. The dual forces of habitat modification and climate change are likely to cause specialists to decline, leaving biological communities with reduced numbers of species and dominated by mobile and widespread habitat generalists.

1,273 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the financial costs of alien species in Europe, as the first step toward calculating an estimate of the economic consequences of extraterrestrial species.
Abstract: Recent comprehensive data provided through the DAISIE project (www.europe-aliens.org) have facilitated the development of the first pan-European assessment of the impacts of alien plants, vertebrates, and invertebrates – in terrestrial, freshwater, and marine environments – on ecosystem services. There are 1094 species with documented ecological impacts and 1347 with economic impacts. The two taxonomic groups with the most species causing impacts are terrestrial invertebrates and terrestrial plants. The North Sea is the maritime region that suffers the most impacts. Across taxa and regions, ecological and economic impacts are highly correlated. Terrestrial invertebrates create greater economic impacts than ecological impacts, while the reverse is true for terrestrial plants. Alien species from all taxonomic groups affect “supporting”, “provisioning”, “regulating”, and “cultural” services and interfere with human well-being. Terrestrial vertebrates are responsible for the greatest range of impacts, and these are widely distributed across Europe. Here, we present a review of the financial costs, as the first step toward calculating an estimate of the economic consequences of alien species in Europe.

985 citations

Journal ArticleDOI
19 Mar 2004-Science
TL;DR: A comparison at the national scale of population and regional extinctions of birds, butterflies, and vascular plants from Britain in recent decades is presented, strengthening the hypothesis that the natural world is experiencing the sixth major extinction event in its history.
Abstract: There is growing concern about increased population, regional, and global extinctions of species. A key question is whether extinction rates for one group of organisms are representative of other taxa. We present a comparison at the national scale of population and regional extinctions of birds, butterflies, and vascular plants from Britain in recent decades. Butterflies experienced the greatest net losses, disappearing on average from 13% of their previously occupied 10-kilometer squares. If insects elsewhere in the world are similarly sensitive, the known global extinction rates of vertebrate and plant species have an unrecorded parallel among the invertebrates, strengthening the hypothesis that the natural world is experiencing the sixth major extinction event in its history.

883 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: A review of the ecological impacts of recent climate change exposes a coherent pattern of ecological change across systems, from polar terrestrial to tropical marine environments.
Abstract: There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.

9,369 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations