scispace - formally typeset
Search or ask a question
Author

David B. Stephenson

Other affiliations: University of Reading, Met Office, University of Edinburgh  ...read more
Bio: David B. Stephenson is an academic researcher from University of Exeter. The author has contributed to research in topics: North Atlantic oscillation & Climate model. The author has an hindex of 67, co-authored 220 publications receiving 20552 citations. Previous affiliations of David B. Stephenson include University of Reading & Met Office.


Papers
More filters
Journal ArticleDOI
TL;DR: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed as discussed by the authors, and the results showed widespread significant changes in temperature extremes associated with warming.
Abstract: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.

3,722 citations

BookDOI
16 Dec 2011
TL;DR: Jolliffe et al. as mentioned in this paper proposed a framework for verification of spatial fields based on binary and categorical events, and proved the correctness of the proposed framework with past, present and future predictions.
Abstract: List of Contributors. Preface. 1. Introduction (I. Jolliffe & D. Stephenson). 2. Basic Concepts (J. Potts). 3. Binary Events (I. Mason). 4. Categorical Events (R. Livezey). 5. Continuous Variables (M. Deque). 6. Verification of Spatial Fields (W. Drosdowsky & H. Zhang). 7. Probability and Ensemble Forecasts (Z. Toth, et al.). 8. Economic Value and Skill (D. Richardson). 9. Forecast Verification: Past, Present and Future (D. Stephenson & I. Jolliffe). Glossary. References. Author Index. Subject Index.

1,633 citations

Journal ArticleDOI
TL;DR: In this article, a variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961-90) and future (2071-2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project.
Abstract: This paper presents an overview of changes in the extreme events that are most likely to affect Europe in forthcoming decades. A variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961–90) and future (2071–2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves – Regional surface warming causes the frequency, intensity and duration of heat waves to increase over Europe. By the end of the twenty first century, countries in central Europe will experience the same number of hot days as are currently experienced in southern Europe. The intensity of extreme temperatures increases more rapidly than the intensity of more moderate temperatures over the continental interior due to increases in temperature variability. Precipitation – Heavy winter precipitation increases in central and northern Europe and decreases in the south; heavy summer precipitation increases in north-eastern Europe and decreases in the south. Mediterranean droughts start earlier in the year and last longer. Winter storms – Extreme wind speeds increase between 45°N and 55°N, except over and south of the Alps, and become more north-westerly than cuurently. These changes are associated with reductions in mean sea-level pressure, leading to more North Sea storms and a corresponding increase in storm surges along coastal regions of Holland, Germany and Denmark, in particular. These results are found to depend to different degrees on model formulation. While the responses of heat waves are robust to model formulation, the magnitudes of changes in precipitation and wind speed are sensitive to the choice of regional model, and the detailed patterns of these changes are sensitive to the choice of the driving global model. In the case of precipitation, variation between models can exceed both internal variability and variability between different emissions scenarios.

1,317 citations

Journal ArticleDOI
TL;DR: The basic theory of the main types of EOFs is reviewed, and a wide range of applications using various data sets are also provided.
Abstract: Climate and weather constitute a typical example where high dimensional and complex phenomena meet. The atmospheric system is the result of highly complex interactions between many degrees of freedom or modes. In order to gain insight in understanding the dynamical/physical behaviour involved it is useful to attempt to understand their interactions in terms of a much smaller number of prominent modes of variability. This has led to the development by atmospheric researchers of methods that give a space display and a time display of large space-time atmospheric data. Empirical orthogonal functions (EOFs) were first used in meteorology in the late 1940s. The method, which decomposes a space-time field into spatial patterns and associated time indices, contributed much in advancing our knowledge of the atmosphere. However, since the atmosphere contains all sorts of features, e.g. stationary and propagating, EOFs are unable to provide a full picture. For example, EOFs tend, in general, to be difficult to interpret because of their geometric properties, such as their global feature, and their orthogonality in space and time. To obtain more localised features, modifications, e.g. rotated EOFs (REOFs), have been introduced. At the same time, because these methods cannot deal with propagating features, since they only use spatial correlation of the field, it was necessary to use both spatial and time information in order to identify such features. Extended and complex EOFs were introduced to serve that purpose. Because of the importance of EOFs and closely related methods in atmospheric science, and because the existing reviews of the subject are slightly out of date, there seems to be a need to update our knowledge by including new developments that could not be presented in previous reviews. This review proposes to achieve precisely this goal. The basic theory of the main types of EOFs is reviewed, and a wide range of applications using various data sets are also provided. Copyright © 2007 Royal Meteorological Society

911 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of SA and its link to uncertainty analysis, model calibration and evaluation, robust decision-making, and provides practical guidelines by developing a workflow for the application of SA.
Abstract: Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be attributed to variations of its input factors. SA is increasingly being used in environmental modelling for a variety of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant control analysis and robust decision-making. In this paper we review the SA literature with the goal of providing: (i) a comprehensive view of SA approaches also in relation to other methodologies for model identification and application; (ii) a systematic classification of the most commonly used SA methods; (iii) practical guidelines for the application of SA. The paper aims at delivering an introduction to SA for non-specialist readers, as well as practical advice with best practice examples from the literature; and at stimulating the discussion within the community of SA developers and users regarding the setting of good practices and on defining priorities for future research. We present an overview of SA and its link to uncertainty analysis, model calibration and evaluation, robust decision-making.We provide a systematic review of existing approaches, which can support users in the choice of an SA method.We provide practical guidelines by developing a workflow for the application of SA and discuss critical choices.We give best practice examples from the literature and highlight trends and gaps for future research.

888 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: In this article, a new climatic drought index, the standardized precipitation evapotranspiration index (SPEI), is proposed, which combines multiscalar character with the capacity to include the effects of temperature variability on drought assessment.
Abstract: The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an...

5,088 citations

Journal ArticleDOI
TL;DR: The basic ideas of PCA are introduced, discussing what it can and cannot do, and some variants of the technique have been developed that are tailored to various different data types and structures.
Abstract: Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori , hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.

4,289 citations