scispace - formally typeset
Search or ask a question

Showing papers by "David Baltimore published in 2010"


Journal ArticleDOI
TL;DR: Recent advances in understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated are discussed.
Abstract: Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression, and they function by repressing specific target genes at the post-transcriptional level. Now, studies of miRNAs are resolving some unsolved issues in immunology. Recent studies have shown that miRNAs have unique expression profiles in cells of the innate and adaptive immune systems and have pivotal roles in the regulation of both cell development and function. Furthermore, when miRNAs are aberrantly expressed they can contribute to pathological conditions involving the immune system, such as cancer and autoimmunity; they have also been shown to be useful as diagnostic and prognostic indicators of disease type and severity. This Review discusses recent advances in our understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated.

1,443 citations


Journal ArticleDOI
17 Sep 2010-Cell
TL;DR: It is reported that miR-146a, one of the miRNAs prevalently expressed in Treg cells, is critical for their suppressor function and that an optimal range of Stat1 activation is important for Treg-mediated control of Th1 responses and associated autoimmunity.

856 citations


Journal ArticleDOI
29 Oct 2010-Immunity
TL;DR: It is shown that one aspect of miR-155 function is the promotion of T cell-dependent tissue inflammation, suggesting that miR -155 might be a promising therapeutic target for the treatment of autoimmune disorders.

822 citations


Journal ArticleDOI
04 Jun 2010-Science
TL;DR: It is shown that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness.
Abstract: The His274→Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007–2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by “permissive” mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.

625 citations


Journal ArticleDOI
TL;DR: An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSCMiRNAs attenuated production of blood cells.
Abstract: The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.

267 citations


Journal ArticleDOI
TL;DR: Using virgin inbred mice undergoing a first syngenic pregnancy, it is demonstrated a maternal splenocyte proliferative response to the CD4+ T cell restricted epitope of the male antigen (H-Y) in proportion to the fetal antigen load.
Abstract: A fetus is inherently antigenic to its mother and yet is not rejected. The T regulatory (Treg) subset of CD4+ T cells can limit immune responses and has been implicated in maternal tolerance of the fetus. Using virgin inbred mice undergoing a first syngenic pregnancy, in which only the male fetuses are antigenic, we demonstrate a maternal splenocyte proliferative response to the CD4+ T cell restricted epitope of the male antigen (H-Y) in proportion to the fetal antigen load. A portion of the maternal immune response to fetal antigens is Treg in nature. The bystander suppressive function of pregnancy-generated Tregs requires the presence of the fetal antigen, demonstrating their inherent antigen specificity. In vivo targeting of diphtheria toxin to kill Tregs leads to a lower fraction of live male offspring and a selective reduction in mass of the surviving males. Thus, Tregs generated in the context of pregnancy function in an antigen-specific manner to limit the maternal immune response to the fetus in a successful pregnancy.

239 citations


Journal ArticleDOI
23 Jul 2010-Immunity
TL;DR: A role for miR-34a is identified in connecting the p53 network with suppression of Foxp1, a known B cell oncogene that influences lineage choice and developmental checkpoints during hematopoiesis.

234 citations


Journal ArticleDOI
26 Aug 2010-Nature
TL;DR: In vivo IκBβ serves both to inhibit and facilitate the inflammatory response, and might be a promising new strategy for selectively inhibiting the chronic phase of TNF-α production during theinflammatory response.
Abstract: The activation of pro-inflammatory gene programs by nuclear factor-kappaB (NF-kappaB) is primarily regulated through cytoplasmic sequestration of NF-kappaB by the inhibitor of kappaB (IkappaB) family of proteins. IkappaBbeta, a major isoform of IkappaB, can sequester NF-kappaB in the cytoplasm, although its biological role remains unclear. Although cells lacking IkappaBbeta have been reported, in vivo studies have been limited and suggested redundancy between IkappaBalpha and IkappaBbeta. Like IkappaBalpha, IkappaBbeta is also inducibly degraded; however, upon stimulation by lipopolysaccharide (LPS), it is degraded slowly and re-synthesized as a hypophosphorylated form that can be detected in the nucleus. The crystal structure of IkappaBbeta bound to p65 suggested this complex might bind DNA. In vitro, hypophosphorylated IkappaBbeta can bind DNA with p65 and c-Rel, and the DNA-bound NF-kappaB:IkappaBbeta complexes are resistant to IkappaBalpha, suggesting hypophosphorylated, nuclear IkappaBbeta may prolong the expression of certain genes. Here we report that in vivo IkappaBbeta serves both to inhibit and facilitate the inflammatory response. IkappaBbeta degradation releases NF-kappaB dimers which upregulate pro-inflammatory target genes such as tumour necrosis factor-alpha (TNF-alpha). Surprisingly, absence of IkappaBbeta results in a dramatic reduction of TNF-alpha in response to LPS even though activation of NF-kappaB is normal. The inhibition of TNF-alpha messenger RNA (mRNA) expression correlates with the absence of nuclear, hypophosphorylated-IkappaBbeta bound to p65:c-Rel heterodimers at a specific kappaB site on the TNF-alpha promoter. Therefore IkappaBbeta acts through p65:c-Rel dimers to maintain prolonged expression of TNF-alpha. As a result, IkappaBbeta(-/-) mice are resistant to LPS-induced septic shock and collagen-induced arthritis. Blocking IkappaBbeta might be a promising new strategy for selectively inhibiting the chronic phase of TNF-alpha production during the inflammatory response.

159 citations


Journal ArticleDOI
06 Aug 2010-PLOS ONE
TL;DR: This study utilizing a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-γc-/- mice following a single intravenous injection unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases.
Abstract: Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-γc-/- mice following a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously generated T-cells in Rag2-/-γc-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases.

69 citations


Journal ArticleDOI
TL;DR: In a clinical setting, the system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA∕RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus.
Abstract: Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.

47 citations


Journal ArticleDOI
TL;DR: D dimeric 2G12 is identified as a potent prophylactic reagent against HIV-1 in vivo, which could be used as part of an antibody cocktail to prevent HIV- 1 infection.
Abstract: We previously showed that broadly neutralizing anti-HIV-1 antibody 2G12 (human IgG1) naturally forms dimers that are more potent than monomeric 2G12 in in vitro neutralization of various strains of HIV-1. In this study, we have investigated the protective effects of monomeric versus dimeric 2G12 against HIV-1 infection in vivo using a humanized mouse model. Our results showed that passively transferred, purified 2G12 dimer is more potent than 2G12 monomer at preventing CD4 T cell loss and suppressing the increase of viral load following HIV-1 infection of humanized mice. Using humanized mice bearing IgG “backpack” tumors that provided 2G12 antibodies continuously, we found that a sustained dimer concentration of 5–25 µg/ml during the course of infection provides effective protection against HIV-1. Importantly, 2G12 dimer at this concentration does not favor mutations of the HIV-1 envelope that would cause the virus to completely escape 2G12 neutralization. We have therefore identified dimeric 2G12 as a potent prophylactic reagent against HIV-1 in vivo, which could be used as part of an antibody cocktail to prevent HIV-1 infection.

Patent
28 Jun 2010
TL;DR: In this paper, the authors presented methods and materials for isolating and identifying T cell receptors from single cells. But they did not specify how to identify the TCR alpha and beta chains.
Abstract: Disclosed herein are methods and materials for isolating and identifying T cell receptors from single cells. In some embodiments, genomic DNA from a single T cell is isolated using whole genome amplification (WGA). A series of PCR reactions is carried out to enrich the genomic template for sequences encoding the TCR alpha and beta chains, and then to isolate the sequences encoding the TCR alpha and beta chains.