scispace - formally typeset
Search or ask a question
Author

David Baltimore

Bio: David Baltimore is an academic researcher from California Institute of Technology. The author has contributed to research in topics: RNA & Virus. The author has an hindex of 203, co-authored 876 publications receiving 162955 citations. Previous affiliations of David Baltimore include Thomas Jefferson University & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated here that v-abl, when transduced in a helper virus-containing system, causes disease similar to, but distinct from, the CML-like syndrome induced by bcr-abl.
Abstract: v-abl, the oncogene transduced by Abelson murine leukemia virus, was first characterized by its ability to transform lymphoid cells. bcr-abl, the oncogene formed by a t(9;22) translocation thought to occur in human hematopoietic stem cells, is detectable in almost all cases of chronic myelogenous leukemia (CML), a malignancy of granulocytic cells. bcr-abl also causes a CML-like syndrome in mice whose bone-marrow cells are infected with a retrovirus transducing the gene. More recent reports have suggested that v-abl can, however, cause a disease similar to CML. We demonstrate here that v-abl, when transduced in a helper virus-containing system, causes disease similar to, but distinct from, the CML-like syndrome induced by bcr-abl. Animals whose bone marrow has been infected by v-abl virus develop modest splenomegaly, marked granulocytosis, and malignant disease of several hematopoietic cell types. Unlike animals with CML-like disease resulting from bcr-abl, the polymorphonuclear leukocytes from animals infected with a v-abl construct do not contain the v-abl provirus at a significant frequency. Histopathologic analysis also shows significant differences between the diseases caused by v-abl and bcr-abl.

41 citations

Journal Article
01 Jul 1993-Oncogene
TL;DR: It is shown that a point mutation in c-Abl is sufficient to change the myristoylated form of c- abl into a protein able to transform fibroblasts, but not capable of transforming bone marrow or inducing Abelson disease.
Abstract: c-abl is the normal cellular homolog of the v-abl transforming gene of Abelson murine leukemia virus. By constructing recombinants between c- and v-abl retroviruses, we show that a point mutation in c-Abl is sufficient to change the myristoylated form of c-Abl into a protein able to transform fibroblasts, but not capable of transforming bone marrow or inducing Abelson disease. This activating mutation, which changes the phenylalanine at amino acid 420 to valine (F420V) found in the homologous position of v-Abl, is positioned outside of the SH3 domain, a region typically modified in transforming alleles of abl. Phenylalanine 420 is perfectly conserved among tyrosine kinases with N-terminal SH3 domains (the Src and Abl families). The equivalent position in other protein tyrosine kinases is a conserved hydrophobic residue that predicts the specific family to which that kinase belongs. Mutation of phenylalanine 420 to other hydrophobic residues activates c-Abl. Unlike other transforming variants of Abl, the F420V mutant protein is not highly phosphorylated on tyrosine. Mutation of the nearby proposed autophosphorylation site, tyrosine 412, shows that this tyrosine is not strictly required for fibroblast transformation in either F420V or SH3-deleted variants of c-Abl (IV).

40 citations

Journal ArticleDOI
TL;DR: RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints and the in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.
Abstract: The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

40 citations

Journal ArticleDOI
TL;DR: Addition of NF-κB to the list of protein−DNA complexes that can be disrupted by minor groove binding ligands potentially increases the utility of polyamides as regulators of gene expression.
Abstract: Synthetic ligands that bind to predetermined DNA sequences will offer a chemical approach to gene regulation if inhibition of a broad range of transcription factors can be achieved. NF-κB is a transcription factor that regulates a multitude of genes, including those involved in immune, inflammatory, and anti-apoptotic responses. NF-κB binds as heterodimer predominantly in the major groove. We report the design of polyamides that bind in the minor groove and target overlapping portions of an NF-κB binding site (5‘-GGGACTTTCC-3‘). We find that compounds that target the 5‘-GGGACT-3‘ portion of the site can inhibit DNA binding by NF-κB while those that target the 5‘-ACTTTCC-3‘ portion do not. Addition of NF-κB to the list of protein−DNA complexes that can be disrupted by minor groove binding ligands potentially increases the utility of polyamides as regulators of gene expression.

40 citations

Journal ArticleDOI
TL;DR: Packaging of whole virions within synthetic lipid vesicles allows efficient infection of resistant cell lines and is more efficient in introducing encapsulated virus into infected cells than into uninfected cells.
Abstract: Cell lines which are infected with retrovirus are resistant to superinfection by a related retrovirus. Packaging of whole virions within synthetic lipid vesicles allows efficient infection of such resistant cell lines. This system is more efficient in introducing encapsulated virus into infected cells than into uninfected cells.

40 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

Journal ArticleDOI
TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Abstract: BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.

10,879 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations