scispace - formally typeset
Search or ask a question
Author

David Baltimore

Bio: David Baltimore is an academic researcher from California Institute of Technology. The author has contributed to research in topics: RNA & Virus. The author has an hindex of 203, co-authored 876 publications receiving 162955 citations. Previous affiliations of David Baltimore include Thomas Jefferson University & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: Two types of mutants of VSV, Indiana serotype, have been found by using the screen; they are new temperature-sensitive mutants which are, of necessity, not in complementation group I and mutants which do not produce plaques under conditions of single infection at 31 C (the normal permissive temperature).
Abstract: To isolate new types of vesicular stomatitis virus (VSV) mutants, a four-stage screen was developed which identifies and characterizes mutants capable of complementing the defect in the VSV temperature-sensitive mutant tsG11. Two types of mutants of VSV, Indiana serotype, have been found by using the screen; they are new temperature-sensitive mutants which are, of necessity, not in complementation group I and mutants which do not produce plaques under conditions of single infection at 31 C (the normal permissive temperature) and are, therefore, called complementation-dependent mutants. The newly isolated, temperature-sensitive mutants fall into three complementation groups, two of which are congruent with known complementation groups; the newly identified group extends to six the number of complementation groups of VSV Indiana. The nature of the complementation-dependent mutants has not been established, but one was shown to not contain a significant deletion in its nucleic acid.

28 citations

Journal ArticleDOI
TL;DR: The autophosphorylation reaction probably correlates with an activity important in transformation, but the specific end product in vitro bears little resemblance to its function in vivo.
Abstract: The Abelson murine leukemia virus transforming gene product is a phosphorylated protein encoded by both viral and cellular sequences. This gene product has an amino-terminal region derived from the gag gene of its parent virus and a carboxyl-terminal region (abl) derived from a normal murine cellular gene. Using a combination of partial proteolytic cleavage techniques and antisera specific for gag and abl sequences, we mapped in vivo phosphorylation sites to different regions of the protein. Phosphoproteins encoded by strain variants and transformation-defective mutants of Abelson murine leukemia virus with defined deletions in the primary sequence of the abl region were compared by two-dimensional limit digest peptide mapping. Specific phosphorylation pattern differences for wild-type and mutant proteins probably represented deletions of specific phosphate acceptor sites in the abl region. An in vitro autophosphorylation activity copurified with the Abelson murine leukemia virus protein from transformation-competent strains. A peptide analysis of such in vitro reactions demonstrated that these phosphorylation sites were restricted to the aminoterminal region, and the specific sites appeared to be unrelated to the sites found on proteins phosphorylated in vivo. Thus, the autophosphorylation reaction probably correlates with an activity important in transformation, but the specific end product in vitro bears little resemblance to its function in vivo.

28 citations

Journal ArticleDOI
TL;DR: The results indicate that the viral RNA polymerase is unstable in the infected cell and, at low concentrations, p -fluorophenylalanine allows viral precursor synthesis but inhibits infectious virus formation.

27 citations

Journal ArticleDOI
TL;DR: It is suggested that lymphoid transformation in vitro is a specific property of abl and not of src or fps, and shows that a functional homology exists between the gag sequence of A‐MuLV and the 5′ end of src.
Abstract: Several chimeric murine retroviruses were constructed to test whether the gag sequence of Abelson murine leukemia virus (A-MuLV) could influence the in vitro specificity of two sarcoma-inducing oncogenes: src of Rous sarcoma virus and fps of Fujinami sarcoma virus. Although the src- or fps- containing chimerae could transform fibroblasts, they were unable to mimic the action of A-MuLV in causing lymphoid transformation in vitro. A-MuLV-derived gag sequences could, however, functionally replace the 5' end of src and restore the transformation potential of a 5'-truncated src gene. To investigate this functional similarity, we replaced the gag sequence of an A-MuLV virus with the 5' end of src. This recombinant virus behaved like the A-MuLV virus from which it was derived: it transformed both fibroblasts and lymphoid cells in vitro. Taken together, these results suggest that lymphoid transformation in vitro is a specific property of abl and not of src or fps. Furthermore, it shows that a functional homology exists between the gag sequence of A-MuLV and the 5' end of src.

27 citations

Journal ArticleDOI
TL;DR: It is reported that the immortal growth property of B Ly-1 cells correlates with a 10-45-fold elevation of steady-state myc RNA and 2-10-fold amplification of the c-myc locus.
Abstract: Recently, a minor subpopulation of murine B lymphocytes, Ly-1+ B cells, has been distinguished by its unique ontogeny, tissue distribution, and prominence in certain autoimmune and neoplastic B cell diseases. We have previously described a simple murine spleen culture system that results in the spontaneous and exclusive outgrowth of long-term Ly-1+ B cell lines (B Ly-1 cells). Here, we report that the immortal growth property of B Ly-1 cells correlates with a 10-45-fold elevation of steady-state myc RNA and 2-10-fold amplification of the c-myc locus. While c-myc amplification has been observed in malignant cell lines derived from several tissues of origin, its occurrence in lymphoid cells has not been previously reported. The consistent c-myc amplification in B Ly-1 cells may reflect a unique state of this locus in the Ly-1+ B lymphocyte lineage, and contribute to the spontaneous immortalization of this B cell population in vitro, and its apparent predilection for malignant transformation in vivo.

27 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

Journal ArticleDOI
TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Abstract: BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.

10,879 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations