scispace - formally typeset
Search or ask a question
Author

David Baltimore

Bio: David Baltimore is an academic researcher from California Institute of Technology. The author has contributed to research in topics: RNA & Virus. The author has an hindex of 203, co-authored 876 publications receiving 162955 citations. Previous affiliations of David Baltimore include Thomas Jefferson University & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that when mice lacking the RelA subunit of NF-κB are brought to term by breeding onto a tumor necrosis factor receptor (TNFR)1-deficient background, the mice that are born lack lymph nodes, Peyer's patches, and an organized splenic microarchitecture, and have a profound defect in T cell–dependent antigen responses.
Abstract: The transcription factor nuclear factor (NF)-κB has been suggested to be a key mediator of the development of lymph nodes and Peyer's patches. However, targeted deletion of NF-κB/ Rel family members has not yet corroborated such a function. Here we report that when mice lacking the RelA subunit of NF-κB are brought to term by breeding onto a tumor necrosis factor receptor (TNFR)1-deficient background, the mice that are born lack lymph nodes, Peyer's patches, and an organized splenic microarchitecture, and have a profound defect in T cell–dependent antigen responses. Analyses of TNFR1/RelA-deficient embryonic tissues and of radiation chimeras suggest that the dependence on RelA is manifest not in hematopoietic cells but rather in radioresistant stromal cells needed for the development of secondary lymphoid organs.

110 citations

Journal ArticleDOI
30 Mar 1989-Nature
TL;DR: It is found that the δ -chain gene in the T-cell receptor α-circles has a germline configuration, indicating that αβ and γδ T cells are distinct lineages.
Abstract: The T-cell antigen receptor is a heterodimer molecule composed of either alpha beta or gamma delta chains. The alpha beta receptor molecules are expressed mainly in CD4+ CD8- and CD4- CD8+ T cells (helper and killer T cells respectively), whereas the gamma delta receptor molecules are expressed mainly in CD4- CD8- T cells. CD4+CD8- and CD4-CD8+ T cells arise from a class of CD4-CD8- T cells during thymus development, raising the question of whether cells rearranging their gamma delta receptors later give rise to alpha beta T cells by further rearrangements of their receptor genes, or whether rearrangements and expression of the receptor genes occur in separate lineages. The delta-chain gene is located between the V alpha (variable) and J alpha (joining) gene segments, and when the rearrangements allowing alpha- and beta-receptors occur, the DNA between these segments is deleted as small circles which can be isolated from developing thymocytes. The rearrangement status of the delta-chain gene in the alpha-circles can therefore be investigated to see whether alpha-chain and delta-chain expression occur in parallel lineages or sequentially within a lineage. We find that the delta-chain gene in the T-cell receptor alpha-circles has a germline configuration, indicating that alpha beta and gamma delta T cells are distinct lineages.

110 citations

Journal ArticleDOI
TL;DR: Mengovirus is a small RNA virus, approximately 27 mµ in diameter, containing only RNA and protein, according to the analyses of Faulkner et al. on the closely related encephalomyocarditis (EMC) virus.
Abstract: Mengovirus is a small RNA virus, approximately 27 mµ in diameter, containing only RNA and protein, according to the analyses of Faulkner et al. on the closely related encephalomyocarditis (EMC) virus. It is a member of the Columbia SK group of viruses which we have been studying in detail in recent years.

110 citations

Journal ArticleDOI
22 Jul 1988-Science
TL;DR: Small lesions throughout region P blocked its initiation function, implying that a coherent functional unit, hundreds of nucleotides long, is responsible for cap-independent initiation by poliovirus RNA.
Abstract: The central portion (region P) of the 742-nucleotide noncoding 5' end of poliovirus allows the RNA to initiate protein synthesis in the absence of the usual 5' 7-methylguanosine capping group. Poliovirus 5' noncoding region was fused to a reporter gene and transfected into cells. There was extensive augmentation of the expression of this gene by poliovirus-mediated inhibition of cap-dependent protein synthesis. That the construct initiated in a cap-independent manner was verified through in vitro experiments. Small lesions throughout region P blocked its initiation function, implying that a coherent functional unit, hundreds of nucleotides long, is responsible for cap-independent initiation by poliovirus RNA.

110 citations

Journal ArticleDOI
TL;DR: Viruses without marker genes corroborated the finding that mutations to the kappaB sites impair virus production in cells with a high basal level of NF-kappaB and showed that in T cells, HIV-1 can use NF-KappaB to enhance its growth but the virus is clearly able to grow in its absence.
Abstract: The dependence of human immunodeficiency virus type 1 (HIV-1) on its NF-kappaB binding sites (kappaB sites) for replication in transformed and primary T-cell targets was examined by infecting cells with HIV-1 reporter viruses containing kappaB site enhancer mutations. Viral transcription was measured either with luciferase-expressing HIV-1 that infects for a single round or by flow cytometric analyses with HIV-1 expressing placental alkaline phosphatase (PLAP) or green-fluorescent protein (GFP). Both PLAP- and GFP-expressing viruses spread from cell to cell and allowed analysis of viral gene expression patterns in single cells. Infection of a panel of T-cell lines with different basal levels of NF-kappaB demonstrated a direct correlation between the amount of constitutive nuclear NF-kappaB and the degree to which a wild-type virus outperformed kappaB site mutants. One T-cell line with a constitutively high level of nuclear NF-kappaB, PM1, showed a 20-fold decrease in transcription when its kappaB sites were mutated. In contrast, in a T-cell line with a low basal level of NF-kappaB, SupT1, mutation of the kappaB site in the enhancer had no effect on viral transcription or growth rate. Phytohemagglutinin-activated peripheral blood mononuclear cells showed a large dependence on the kappaB sites for optimal virus growth. Viruses without marker genes corroborated the finding that mutations to the kappaB sites impair virus production in cells with a high basal level of NF-kappaB. These data show that in T cells, HIV-1 can use NF-kappaB to enhance its growth but the virus is clearly able to grow in its absence.

109 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

Journal ArticleDOI
TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Abstract: BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.

10,879 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations