scispace - formally typeset
Search or ask a question
Author

David Beach

Bio: David Beach is an academic researcher from Cold Spring Harbor Laboratory. The author has contributed to research in topics: Cyclin-dependent kinase 1 & Cell cycle. The author has an hindex of 97, co-authored 204 publications receiving 54757 citations. Previous affiliations of David Beach include Howard Hughes Medical Institute & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: Results are consistent with the hypothesis that p16INK4 is a tumor-suppressor protein and that genetic and epigenetic abnormalities in genes controlling the G1 checkpoint can lead to both escape from senescence and cancer formation.
Abstract: Cell cycle arrest at the G1 checkpoint allows completion of critical macromolecular events prior to S phase. Regulators of the G1 checkpoint include an inhibitor of cyclin-dependent kinase, p16INK4; two tumor-suppressor proteins, p53 and RB (the product of the retinoblastoma-susceptibility gene); and cyclin D1. Neither p16INK4 nor the RB protein was detected in 28 of 29 tumor cell lines from human lung, esophagus, liver, colon, and pancreas. The presence of p16INK4 protein is inversely correlated with detectable RB or cyclin D1 proteins and is not correlated with p53 mutations. Homozygous deletions of p16INK4 were detected in several cell lines, but intragenic mutations of this gene were unusual in either cell lines or primary tumors. Transfection of the p16INK4 cDNA expression vector into carcinoma cells inhibits their colony-forming efficiency and the p16INK4 expressing cells are selected against with continued passage in vitro. These results are consistent with the hypothesis that p16INK4 is a tumor-suppressor protein and that genetic and epigenetic abnormalities in genes controlling the G1 checkpoint can lead to both escape from senescence and cancer formation.

577 citations

Journal ArticleDOI
TL;DR: The pattern of subunit rearrangement of cyclin-CDK complexes in SV40-transformed cells is also shared in those containing adeno- or papilloma viral oncoproteins, and this findings suggest a mechanism by which oncogenic proteins alter the cell cycle of transformed cells.
Abstract: In normal human diploid fibroblasts, cyclins of the A, B, and D classes each associate with cyclin-dependent kinases (CDKs), proliferating cell nuclear antigen (PCNA), and p21, thereby forming multiple independent quaternary complexes. Upon transformation of diploid fibroblasts with the DNA tumor virus SV40, or its transforming tumor antigen (T), the cyclin D/p21/CDK/PCNA complexes are disrupted. In transformed cells, CDK4 totally dissociates from cyclin D, PCNA, and p21 and, instead, associates exclusively with a polypeptide of 16 kD (p16). Quaternary complexes containing cyclins A or B1 and p21/CDK/PCNA also undergo subunit rearrangement in transformed cells. Both PCNA and p21 are no longer associated with CDC2-cyclin B1 binary complexes. Cyclin A complexes no longer contain p21, and a new 19-kD polypeptide (p19) is found in association with cyclin A. The pattern of subunit rearrangement of cyclin-CDK complexes in SV40-transformed cells is also shared in those containing adeno- or papilloma viral oncoproteins. Rearrangement also occurs in p53-deficient cells derived from Li-Fraumeni patients that carry no known DNA tumor virus. These findings suggest a mechanism by which oncogenic proteins alter the cell cycle of transformed cells.

535 citations

Journal ArticleDOI
TL;DR: Twin may play multiple roles in the formation of rhabdomyosarcomas, halting terminal differentiation, inhibiting apoptosis, and interfering with the p53 tumor-suppressor pathway.
Abstract: Oncogene activation increases susceptibility to apoptosis. Thus, tumorigenesis must depend, in part, on compensating mutations that protect from programmed cell death. A functional screen for cDNAs that could counteract the proapoptotic effects of the myc oncogene identified two related bHLH family members, Twist and Dermo1. Both of these proteins inhibited oncogene- and p53-dependent cell death. Twist expression bypassed p53-induced growth arrest. These effects correlated with an ability of Twist to interfere with activation of a p53-dependent reporter and to impair induction of p53 target genes in response to DNA damage. An underlying explanation for this observation may be provided by the ability of Twist to reduce expression of the ARF tumor suppressor. Thus, Twist may affect p53 indirectly through modulation of the ARF/MDM2/p53 pathway. Consistent with a role as a potential oncoprotein, Twist expression promoted colony formation of E1A/ras-transformed mouse embryo fibroblasts (MEFs) in soft agar. Furthermore, Twist was inappropriately expressed in 50% of rhabdomyosarcomas, a tumor that arises from skeletal muscle precursors that fail to differentiate. Twist is known to block myogenic differentiation. Thus, Twist may play multiple roles in the formation of rhabdomyosarcomas, halting terminal differentiation, inhibiting apoptosis, and interfering with the p53 tumor-suppressor pathway.

532 citations

Journal ArticleDOI
20 Dec 1991-Cell
TL;DR: Findings indicate that B-type cyclins are multifunctional proteins that not only act as M phase regulatory subunits of the cDC2 protein kinase, but also activate the cdc25 tyrosine phosphatase, of which cdc2 is the physiological substrate.

509 citations

Journal ArticleDOI
15 Sep 1995-Science
TL;DR: In rodent cells, human CDC25A or CDC25B but not CDC25C phosphatases cooperate with either Ha-RASG12V or loss of RB1 in oncogenic focus formation, and transformants were highly aneuploid, grew in soft agar, and formed high-grade tumors in nude mice.
Abstract: Cyclin-dependent kinases (CDKs) are activated by CDC25 phosphatases, which remove inhibitory phosphate from tyrosine and threonine residues. In human cells, CDC25 proteins are encoded by a multigene family, consisting of CDC25A, CDC25B, and CDC25C. In rodent cells, human CDC25A or CDC25B but not CDC25C phosphatases cooperate with either Ha-RASG12V or loss of RB1 in oncogenic focus formation. Such transformants were highly aneuploid, grew in soft agar, and formed high-grade tumors in nude mice. Overexpression of CDC25B was detected in 32 percent of human primary breast cancers tested. The CDC25 phosphatases may contribute to the development of human cancer.

507 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
22 May 2009-Science
TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Abstract: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

12,380 citations

Journal ArticleDOI
TL;DR: A method that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements is described, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.
Abstract: Microarrays can measure the expression of thousands of genes to identify changes in expression between different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. We describe a method, Significance Analysis of Microarrays (SAM), that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance, the false discovery rate (FDR). When the transcriptional response of human cells to ionizing radiation was measured by microarrays, SAM identified 34 genes that changed at least 1.5-fold with an estimated FDR of 12%, compared with FDRs of 60 and 84% by using conventional methods of analysis. Of the 34 genes, 19 were involved in cell cycle regulation and 3 in apoptosis. Surprisingly, four nucleotide excision repair genes were induced, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.

12,102 citations