scispace - formally typeset
Search or ask a question
Author

David Brown

Bio: David Brown is an academic researcher from University of Sydney. The author has contributed to research in topics: Medicine & M current. The author has an hindex of 105, co-authored 1257 publications receiving 46827 citations. Previous affiliations of David Brown include Mansfield University of Pennsylvania & American Physical Therapy Association.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new typology for management control systems (MCS) is proposed, which is based on the distinction between decision-making and control and addresses those controls managers use to direct employee behaviour.

1,358 citations

Journal ArticleDOI
TL;DR: KCNQ genes encode five Kv7 K+ channel subunits, which are the principal molecular components of the slow voltage‐gated M‐channel, which widely regulates neuronal excitability, although other subunits may contribute to M‐like currents in some locations.
Abstract: KCNQ genes encode five Kv7 K+ channel subunits (Kv7.1–Kv7.5). Four of these (Kv7.2–Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which widely regulates neuronal excitability, although other subunits may contribute to M-like currents in some locations. M-channels are closed by receptors coupled to Gq such as M1 and M3 muscarinic receptors; this increases neuronal excitability and underlies some forms of cholinergic excitation. Muscarinic closure results from activation of phospholipase C and consequent hydrolysis and depletion of membrane phosphatidylinositol-4,5-bisphosphate, which is required for channel opening. Some effects of M-channel closure, determined from transmitter action, selective blocking drugs (linopirdine and XE991) and KCNQ2 gene disruption or manipulation, are as follows: (i) in sympathetic neurons: facilitation of repetitive discharges and conversion from phasic to tonic firing; (ii) in sensory nociceptive systems: facilitation of A-delta peripheral sensory fibre responses to noxious heat; and (iii) in hippocampal pyramidal neurons: facilitation of repetitive discharges, enhanced after-depolarization and burst-firing, and induction of spontaneous firing through a reduction of action potential threshold at the axon initial segment. Several drugs including flupirtine and retigabine enhance neural Kv7/M-channel activity, principally through a hyperpolarizing shift in their voltage gating. In consequence they reduce neural excitability and can inhibit nociceptive stimulation and transmission. Flupirtine is in use as a central analgesic; retigabine is under clinical trial as a broad-spectrum anticonvulsant and is an effective analgesic in animal models of chronic inflammatory and neuropathic pain.

587 citations

Journal ArticleDOI
Sanjeev Khosla1, Wendy Dean1, David Brown1, Wolf Reik1, Robert Feil1 
TL;DR: Whether culture of preimplantation mouse embryos in a chemically defined medium with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression is determined.
Abstract: Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 1 FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 1 FCS fetuses. No alterations were detected for the imprinted gene Mest. Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development. developmental biology, gene regulation, IGF receptor, implantation/early development

582 citations

Journal ArticleDOI
TL;DR: The results suggest that the youngest and the oldest drivers were more likely to be considered at-fault, and it was concluded that the primary problem with the young is risk-taking and lack of skill.

550 citations

Journal ArticleDOI
TL;DR: Bullfrog lumbar sympathetic neurones were voltage‐clamped in vitro through twin micro‐electrodes to identify a new K+ current, the M‐current (IM), which was rapidly and totally inactivated at all potentials within its activation range.
Abstract: 1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K(+)) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (I(K)) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (I(C)) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (I(A)) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K(+) current, the M-current (I(M)).2. I(M) was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance G(M) showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (G(M)) of 84+/-14 (S.E.M.) nS per neurone. The voltage sensitivity of G(M) could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle.3. I(M) activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at approximately 150 ms at -35 mV at 22 degrees C.4. Instantaneous current-voltage (I/V) curves were approximately linear in the presence of I(M), suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of I(M).5. It is suggested that I(M) exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation.

507 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, three parallel algorithms for classical molecular dynamics are presented, which can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors.

32,670 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

25,256 citations

Journal Article
TL;DR: PAST (PAleontological STatistics) as discussed by the authors is a simple-to-use software package for executing a range of standard numerical analysis and operations used in quantitative paleontology.
Abstract: A comprehensive, but simple-to-use software package for executing a range of standard numerical analysis and operations used in quantitative paleontology has been developed. The program, called PAST (PAleontological STatistics), runs on standard Windows computers and is available free of charge. PAST integrates spreadsheet-type data entry with univariate and multivariate statistics, curve fitting, timeseries analysis, data plotting, and simple phylogenetic analysis. Many of the functions are specific to paleontology and ecology, and these functions are not found in standard, more extensive, statistical packages. PAST also includes fourteen case studies (data files and exercises) illustrating use of the program for paleontological problems, making it a complete educational package for courses in quantitative methods.

19,926 citations