scispace - formally typeset
Search or ask a question
Author

David C. Dale

Bio: David C. Dale is an academic researcher from University of Washington. The author has contributed to research in topics: Neutropenia & Congenital Neutropenia. The author has an hindex of 85, co-authored 406 publications receiving 24613 citations. Previous affiliations of David C. Dale include National Institutes of Health & Fred Hutchinson Cancer Research Center.


Papers
More filters
Journal ArticleDOI
01 Jan 1975-Medicine
TL;DR: A group of 14 patients had hematologic, cardiac, and neurologic abnormalities attributable to this disease, and patient survival and response to chemotherapy was significantly better in this group than in previously reported patients.

1,319 citations

Journal ArticleDOI
TL;DR: Results support the hypothesis that the CXCL12-CXCR4 axis is involved in marrow retention of HSCs and HPCs, and demonstrate the clinical potential of AMD3100 for HSC mobilization.
Abstract: Improving approaches for hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is clinically important because increased numbers of these cells are needed for enhanced transplantation. Chemokine stromal cell derived factor-1 (also known as CXCL12) is believed to be involved in retention of HSCs and HPCs in bone marrow. AMD3100, a selective antagonist of CXCL12 that binds to its receptor, CXCR4, was evaluated in murine and human systems for mobilizing capacity, alone and in combination with granulocyte colony-stimulating factor (G-CSF). AMD3100 induced rapid mobilization of mouse and human HPCs and synergistically augmented G-CSF–induced mobilization of HPCs. AMD3100 also mobilized murine long-term repopulating (LTR) cells that engrafted primary and secondary lethally-irradiated mice, and human CD34+ cells that can repopulate nonobese diabetic-severe combined immunodeficiency (SCID) mice. AMD3100 synergized with G-CSF to mobilize murine LTR cells and human SCID repopulating cells (SRCs). Human CD34+ cells isolated after treatment with G-CSF plus AMD3100 expressed a phenotype that was characteristic of highly engrafting mouse HSCs. Synergy of AMD3100 and G-CSF in mobilization was due to enhanced numbers and perhaps other characteristics of the mobilized cells. These results support the hypothesis that the CXCL12-CXCR4 axis is involved in marrow retention of HSCs and HPCs, and demonstrate the clinical potential of AMD3100 for HSC mobilization.

1,139 citations

Journal ArticleDOI
TL;DR: The administration of glucocorticosteroids results in a wide range of effects on inflammatory and immunologically mediated disease processes, and the corticosteroid regimen should be adjusted to attain maximal therapeutic benefit with minimal adverse side effects.
Abstract: The administration of glucocorticosteroids results in a wide range of effects on inflammatory and immunologically mediated disease processes. Glucocorticosteroids cause neutrophilic leukocytosis together with eosinopenia, monocytopenia, and lymphocytopenia. A principal mechanism whereby corticosteroids suppress inflammation is their impeding the access of neutrophils and monocytes to an inflammatory site. Granulocyte function is relatively refractory, whereas monocyte-macrophage function seems to be particularly sensitive to corticosteroids. Corticosteroid administration causes a transient lymphocytopenia of all detectable lymphocyte subpopulations, particularly the recirculating thymus-derived lymphocyte. The mechanism of this lymphocytopenia is probably a redistribution of circulating cells to other body compartments. There is considerable disagreement about the direct effects of corticosteroid administration on human lymphocyte function. The corticosteroid regimen should be adjusted to attain maximal therapeutic benefit with minimal adverse side effects. Often, alternate-day dosage regimens effectively maintain disease remission with minimization or lack of Cushingoid and infectious complications.

925 citations

Journal ArticleDOI
15 Oct 2003-Blood
TL;DR: Findings suggest potential clinical application of AMD3100 for CD34+ cell mobilization and collection for hematopoietic stem cell transplantation.

739 citations

Journal ArticleDOI
15 Aug 2008-Blood
TL;DR: Over the last 50 years, many genetic and molecular disorders of phagocytes have been identified, leading to improved diagnosis and treatment of conditions which predispose patients to the risk of recurrent fevers and infectious diseases.

671 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review suggests a new grouping of macrophages based on three different homeostatic activities — host defence, wound healing and immune regulation, and proposes that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation.
Abstract: Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.

7,384 citations

Journal ArticleDOI
TL;DR: The key features of the life of a neutrophil are discussed, from its release from bone marrow to its death, and the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites are explained.
Abstract: Neutrophils have traditionally been thought of as simple foot soldiers of the innate immune system with a restricted set of pro-inflammatory functions. More recently, it has become apparent that neutrophils are, in fact, complex cells capable of a vast array of specialized functions. Although neutrophils are undoubtedly major effectors of acute inflammation, several lines of evidence indicate that they also contribute to chronic inflammatory conditions and adaptive immune responses. Here, we discuss the key features of the life of a neutrophil, from its release from bone marrow to its death. We discuss the possible existence of different neutrophil subsets and their putative anti-inflammatory roles. We focus on how neutrophils are recruited to infected or injured tissues and describe differences in neutrophil recruitment between different tissues. Finally, we explain the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites.

3,898 citations

Journal ArticleDOI
15 Jul 1977-Science
TL;DR: First-order nonlinear differential-delay equations describing physiological control systems displaying a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions are studied.
Abstract: First-order nonlinear differential-delay equations describing physiological control systems are studied. The equations display a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions. These results are discussed in relation to dynamical respiratory and hematopoietic diseases.

3,839 citations

Journal ArticleDOI
TL;DR: This review examines evolving concepts of sepsis and discusses new and potential therapies, including therapy with activated protein C, stringent control of blood glucose, and early goal-directed therapy to treat cellular oxygen deficit.
Abstract: Sepsis is the leading cause of death in critically ill patients in the United States. Yet the individual host response to septicemia is variable, depending on the patient's immune response, age, nutritional status, and coexisting conditions, as well as on the virulence of the organism and the size of the inoculum. This review examines evolving concepts of sepsis and discusses new and potential therapies. Recent clinical advances include therapy with activated protein C, stringent control of blood glucose, and early goal-directed therapy to treat cellular oxygen deficit. Future therapies may be focused on modulating the immune response in the light of the characteristics of the specific pathogen, the genetic profile of the patient, and the duration of the disease.

3,773 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations