scispace - formally typeset
Search or ask a question
Author

David C. Evans

Bio: David C. Evans is an academic researcher from Merck & Co.. The author has contributed to research in topics: Microsome & Metabolite. The author has an hindex of 23, co-authored 28 publications receiving 2247 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper serves to provide one pragmatic approach to addressing the issue of bioactivation from an industry viewpoint based on protocols adopted by Merck Research Laboratories.
Abstract: It is generally accepted that there is neither a well-defined nor a consistent link between the formation of drug-protein adducts and organ toxicity. Because the potential does exist, however, for these processes to be causally related, the general strategy at Merck Research Laboratories has been to minimize reactive metabolite formation to the extent possible by appropriate structural modification during the lead optimization stage. This requires a flexible approach to defining bioactivation issues in a variety of metabolism vectors and typically involves the initial use of small molecule trapping agents to define the potential for bioactivation. At some point, however, there is a requirement to synthesize a radiolabeled tracer and to undertake covalent binding studies in vitro, usually in liver microsomal (and sometimes hepatocyte) preparations from preclinical species and human, and also in vivo, typically in the rat. This paper serves to provide one pragmatic approach to addressing the issue of bioactivation from an industry viewpoint based on protocols adopted by Merck Research Laboratories. The availability of a dedicated Labeled Compound Synthesis group, coupled to a close working relationship between Drug Metabolism and Medicinal Chemistry, represents a framework within which this perspective becomes viable; the overall aim is to bring safer drugs to patients.

681 citations

Journal ArticleDOI
TL;DR: The facile dansyl derivatization coupled with tandem mass spectral analysis allowed the development of a highly sensitive and specific method for quantitation of trace levels of EE in the plasma of rhesus monkeys dosed orally and intravenously with EE.
Abstract: The extensive metabolism and administration of low doses of ethinylestradiol (EE) in preclinical animal species necessitates a sensitive analytical method to quantify the drug at low picogram-per-milliliter concentrations in biological matrixes. A highly sensitive and accurate method based on the derivatization of EE with dansyl chloride coupled with liquid chromatography/tandem mass spectrometry is described. The dansyl derivatization of EE introduced a basic secondary nitrogen into the molecule that was readily ionized in commonly used acidic HPLC mobile phases. The derivative showed an intense protonated molecular ion at m/z 530 under positive turbo ion spray ionization. The collision-induced dissociation of this ion formed a distinctive product at m/z 171, corresponding to the protonated 5-(dimethylamino)naphthalene moiety. The selected reaction monitoring, based on the m/z 530 → 171 transition, was highly specific for EE, since no background signal was observed from blank plasma obtained from rhesus ...

189 citations

Journal ArticleDOI
TL;DR: Findings may have general implications in the use of total (free + conjugated) oxidative metabolite excretion for determining primary routes of drug clearance and may question the utility of diclofenac as a probe for phenotyping human CYP2C9 activity in vivo via measurement of its pharmacokinetics and total 4′-hydroxydicl ofenac urinary excretion.
Abstract: Diclofenac is eliminated predominantly (∼50%) as its 4′-hydroxylated metabolite in humans, whereas the acyl glucuronide (AG) pathway appears more important in rats (∼50%) and dogs (>80–90%). However, previous studies of diclofenac oxidative metabolism in human liver microsomes (HLMs) have yielded pronounced underprediction of human in vivo clearance. We determined the relative quantitative importance of 4′-hydroxy and AG pathways of diclofenac metabolism in rat, dog, and human liver microsomes. Microsomal intrinsic clearance values (CL int = V max / K m ) were determined and used to extrapolate the in vivo blood clearance of diclofenac in these species. Clearance of diclofenac was accurately predicted from microsomal data only when both the AG and the 4′-hydroxy pathways were considered. However, the fact that the AG pathway in HLMs accounted for ∼75% of the estimated hepatic CL int of diclofenac is apparently inconsistent with the 4′-hydroxy diclofenac excretion data in humans. Interestingly, upon incubation with HLMs, significant oxidative metabolism of diclofenac AG, directly to 4′-hydroxy diclofenac AG, was observed. The estimated hepatic CL int of this pathway suggested that a significant fraction of the intrahepatically formed diclofenac AG may be converted to its 4′-hydroxy derivative in vivo. Further experiments indicated that this novel oxidative reaction was catalyzed by CYP2C8, as opposed to CYP2C9-catalyzed 4′-hydroxylation of diclofenac. These findings may have general implications in the use of total (free + conjugated) oxidative metabolite excretion for determining primary routes of drug clearance and may question the utility of diclofenac as a probe for phenotyping human CYP2C9 activity in vivo via measurement of its pharmacokinetics and total 4′-hydroxy diclofenac urinary excretion.

162 citations

Journal ArticleDOI
TL;DR: Data indicate that P450 3A4-mediated bioactivation of raloxifene in vitro is accompanied by loss of enzyme activity, which is effective in the treatment of osteoporosis in postmenopausal women.
Abstract: Raloxifene is a selective estrogen receptor modulator which is effective in the treatment of osteoporosis in postmenopausal women. We report herein that cytochrome P450 (P450)3A4 is inhibited by raloxifene in human liver microsomal incubations. The nature of the inhibition was irreversible and was NADPH- and preincubation time-dependent, with K(I) and k(inact) values estimated at 9.9 microM and 0.16 min(-1), respectively. The observed loss of P450 3A4 activity was attenuated partially by glutathione (GSH), implying the involvement of a reactive metabolite(s) in the inactivation process. Subsequently, GSH adducts of raloxifene were identified in incubations with human liver microsomes; substitution with GSH occurred at the 5- or 7-position of the benzothiophene moiety or at the 3'-position of the phenol ring, with the 7-glutathionyl derivative being most abundant based on LC/MS and NMR analyses. These adducts are postulated to derive from addition of GSH to raloxifene arene oxides followed by dehydration and aromatization. Alternatively, raloxifene may be oxidized to an extended quinone intermediate, which then is trapped by GSH conjugation. The bioactivation of raloxifene most likely is catalyzed by P450 3A4, since the formation of GSH adducts was almost abolished when liver microsomes were pretreated with ketoconazole or with an inhibitory anti-P450 3A4 IgG. The GSH adducts also were detected in incubations of raloxifene with rat or human hepatocytes, while the corresponding N-acetylcysteine adducts were identified in the bile and urine from rats treated orally with the drug at 5 mg/kg. Taken together, these data indicate that P450 3A4-mediated bioactivation of raloxifene in vitro is accompanied by loss of enzyme activity. The significance of these findings with respect to the clinical use of raloxifene remains to be determined.

142 citations

Journal ArticleDOI
TL;DR: Generic methodology for the automated preparation and analysis of drug levels in plasma samples within a drug discovery environment was achieved through the redesign of a protein precipitation assay to a microtiter plate format and the application of robotic liquid handling for performance of all transfer and pipetting steps.
Abstract: Generic methodology for the automated preparation and analysis of drug levels in plasma samples within a drug discovery environment was achieved through the redesign of a protein precipitation assay to a microtiter (96−well) plate format and the application of robotic liquid handling for performance of all transfer and pipetting steps. Validation studies revealed that the application of robotics to sample preparation, in general, maintained the analytical accuracy and precision compared with preparing samples manually. The use of rapid gradient LC-MS/MS for analysis coupled with flow diversion of the solvent front allowed the introduction of protein-precipitated samples into the mass spectrometer without the necessity for source cleaning. The problem inherent in automatically pipetting plasma, caused by fibrinogen clots, was overcome by storing samples at −80 °C and thus precluding clot formation. The resulting methodology allowed sample preparation for a 96-well plate designed to accommodate 54 unknowns,...

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates.
Abstract: The concept of isosterism between relatively simple chemical entities was originally contemplated by James Moir in 1909, a notion further refined by H. G. Grimm’s hydride displacement law and captured more effectively in the ideas advanced by Irving Langmuir based on experimental observations. Langmuir coined the term “isostere” and, 18 years in advance of its actual isolation and characterization, predicted that the physical properties of the then unknown ketene would resemble those of diazomethane. The emergence of bioisosteres as structurally distinct compounds recognized similarly by biological systems has its origins in a series of studies published byHans Erlenmeyer in the 1930s, who extended earlier work conducted by Karl Landsteiner. Erlenmeyer showed that antibodies were unable to discriminate between phenyl and thienyl rings or O, NH, and CH2 in the context of artificial antigens derived by reacting diazonium ions with proteins, a process that derivatized the ortho position of tyrosine, as summarized in Figure 1 The term “bioisostere” was introduced by Harris Friedman in 1950 who defined it as compounds eliciting a similar biological effect while recognizing that compounds may be isosteric but not necessarily bioisosteric. This notion anticipates that the application of bioisosterism will depend on context, relying much less on physicochemical properties as the underlying principle for biochemical mimicry. Bioisosteres are typically less than exact structural mimetics and are often more alike in biological rather than physical properties. Thus, an effective bioisostere for one biochemical application may not translate to another setting, necessitating the careful selection and tailoring of an isostere for a specific circumstance. Consequently, the design of bioisosteres frequently introduces structural changes that can be beneficial or deleterious depending on the context, with size, shape, electronic distribution, polarizability, dipole, polarity, lipophilicity, and pKa potentially playing key contributing roles in molecular recognition and mimicry. In the contemporary practice of medicinal chemistry, the development and application of bioisosteres have been adopted as a fundamental tactical approach useful to address a number of aspects associated with the design and development of drug candidates. The established utility of bioisosteres is broad in nature, extending to improving potency, enhancing selectivity, altering physical properties, reducing or redirecting metabolism, eliminating or modifying toxicophores, and acquiring novel intellectual property. In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates. Interesting concepts that may have been poorly effective in the context examined are captured, since the ideas may have merit in alternative circumstances. A comprehensive cataloging of bioisosteres is beyond the scope of what will be provided, although a synopsis of relevant isosteres of a particular functionality is summarized in a succinct fashion in several sections. Isosterism has also found productive application in the design and optimization of organocatalysts, and there are several examples in which functional mimicry established initially in a medicinal chemistry setting has been adopted by this community.

2,049 citations

Journal ArticleDOI
TL;DR: Crystal structures of several of the major human P450s are now in hand, and unresolved problems include the characterization of the minor "orphan" P 450s, ligand cooperativity and kinetic complexity of several P450S, the prediction of metabolism, the overall contribution of bioactivation to drug idiosyncratic problems, the extrapolation of animal test results to humans in drug development, and the contribution of genetic variation in human P550s to cancer incidence.
Abstract: The field of cytochrome P450 (P450) research has developed considerably over the past 20 years, and many important papers on the roles of P450s in chemical toxicology have appeared in Chemical Research in Toxicology. Today, our basic understanding of many of the human P450s is relatively well-established, in terms of the details of the individual genes, sequences, and basic catalytic mechanisms. Crystal structures of several of the major human P450s are now in hand. The animal P450s are still important in the context of metabolism and safety testing. Many well-defined examples exist for roles of P450s in decreasing the adverse effects of drugs through biotransformation, and an equally interesting field of investigation is the bioactivation of chemicals, including drugs. Unresolved problems include the characterization of the minor “orphan” P450s, ligand cooperativity and kinetic complexity of several P450s, the prediction of metabolism, the overall contribution of bioactivation to drug idiosyncratic probl...

1,392 citations