scispace - formally typeset
Search or ask a question

Showing papers by "David C. Fritts published in 1997"


Journal ArticleDOI
TL;DR: In this paper, small-scale structures were observed for about 20 min and appear to be associated with an overturned or breaking atmospheric gravity wave as observed by the lidar, which had a horizontal wavelength of between 500 and 1500 km, a vertical wavelength of about 6 km and an observed period of between 4 and 6 hours.
Abstract: The Collaborative Observations Regarding the Nightglow (CORN) campaign took place at the Urbana Atmospheric Observatory during September 1992. The instrumentation included, among others, the Aerospace Corporation narrowband nightglow CCD camera, which observes the OH Meinel (6–2) band (hereafter designated OH) and the O2 atmospheric (0–1) band (hereafter designated O2) nightglow emissions; the University of Illinois Na density/temperature lidar; and the University of Illinois MF radar. Here we report on observations of small-scale (below 10-km horizontal wavelength) structures in the OH airglow images obtained with the CCD camera. These small-scale structures were aligned perpendicular to the motion of 30- to 50-km horizontal wavelength waves, which had observed periods of about 10–20 min. The small-scale structures were present for about 20 min and appear to be associated with an overturned or breaking atmospheric gravity wave as observed by the lidar. The breaking wave had a horizontal wavelength of between 500 and 1500 km, a vertical wavelength of about 6 km, and an observed period of between 4 and 6 hours. The motion of this larger-scale wave was in the same direction as the ≈30- to 50-km waves. While such small-scale structures have been observed before, and have been previously described as ripple-type wave structures [Taylor and Hapgood, 1990], these observations are the first which can associate their occurrence with independent evidence of wave breaking. The characteristics of the observed small-scale structures are similar to the vortices generated during wave breakdown in three dimensions in simulations described in Part 2 of this study [Fritts et al., this issue]. The results of this study support the idea that ripple type wave structures we observe are these vortices generated by convective instabilities rather than structures generated by dynamical instabilities.

132 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a fitting procedure to study the phase/amplitude behavior of the wave in the 9-month period from mid-January through mid-October 1993.
Abstract: Mesospheric radars are used to investigate the characteristics of a Kelvin wave from two equatorial sites: Jakarta, Indonesia, in the western Pacific and Christmas Island in the central Pacific. Our study focuses on the time span from mid-January through mid-October 1993. A Kelvin wave with a period near 3 days was detected throughout this 9-month duration, although it underwent deep amplitude modulations on a ∼20-day timescale. A fitting procedure is applied to study the phase/amplitude behavior of the wave. The vertical wavenumber was measured by the radars and found to be small, wandering around zero with only a weak bias toward downward phase progression. The long vertical wavelength suggests that the wave was predominantly zonal wavenumber 1. The amplitude of the wave measured by the Jakarta meteor scatter radar was much larger than the amplitude measured by the MF partial reflection radar at Christmas Island. The smaller wave amplitude at Christmas Island could at least partially be due to a measurement bias associated with MF radars. The radar at Jakarta is a VHF meteor scatter radar and is not susceptible to this bias. However, the mean velocities and the amplitudes of the tidal and quasi 2-day wave components were in good agreement at the two sites. The estimated 9-month averaged zonal acceleration was ∼0.67 ms−1 day−1 over Jakarta at 94–98 km and only about half as large over Christmas Island. The magnitude of the zonal acceleration occasionally showed large enhancements which suggest the importance of refractive effects associated with vertical and temporal variations in the mean winds. The larger 3-day wave amplitudes and inferred acceleration at Jakarta may reflect its location in the western Pacific, a region of high convection, and hence an excitation region for equatorial waves. The relative phase of the wave between the two radar sites gradually shifted over a timescale of weeks. These smooth variations in relative phase are suggestive of a superposition of waves with different zonal wavenumbers, perhaps radiating preferentially from one longitude. The phase of the wave as a function of altitude and time was much more disordered at Jakarta than at Christmas Island. The conjecture can be made that the more chaotic phase structure observed over Jakarta is due to higher-order zonal wavenumber components which weaken as they propagate eastward.

81 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe four simulations of wave breaking with a three-dimensional model designed to assist in the interpretation of these observations, and suggest that instability due to a superposition of waves accounts best for the nightglow features observed during the CORN campaign and that streamwise convective instabilities observed due to wave breaking at higher intrinsic frequencies continue to dominate instability structure for internal waves for which inertial effects are important.
Abstract: Measurements of atmospheric structure and dynamics near the mesopause were performed using a sodium lidar, an MF radar, and a night-glow CCD camera during the CORN campaign performed in central Illinois during September 1992. The major features of the observed structure on September 27/28 include a low-frequency, large-scale wave accounting for persistent overturning of the temperature and sodium density fields, superposed higher-frequency motions, small-scale transient ripples in the nightglow images suggestive of instability structures, and large-scale wind shear near the height of apparent instability. We describe four simulations of wave breaking with a three-dimensional model designed to assist in the interpretation of these observations. Two simulations address the instability of a low-frequency wave in a background shear flow with and without higher-frequency modulation. These show higher-frequency motions to be important in assigning the spatial and temporal scales of instability structures. Two other simulations examine the instabilities accompanying a convectively unstable inertia-gravity wave with and without higher-frequency modulation without mean shear. These show the instability structure to remain aligned in the direction of wave propagation, with only weak influences by the high-frequency motion. Our results suggest that instability due to a superposition of waves accounts best for the nightglow features observed during the CORN campaign and that streamwise convective instabilities observed due to wave breaking at higher intrinsic frequencies continue to dominate instability structure for internal waves for which inertial effects are important.

60 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a formal solution to the initial value problem for small perturbations of a straight vortex tube with constant vorticity, and show that any initial perturbation to such a tube evolves exclusively as a collection of Kelvin vortex waves.
Abstract: We present a formal solution to the initial value problem for small perturbations of a straight vortex tube with constant vorticity, and show that any initial perturbation to such a tube evolves exclusively as a collection of Kelvin vortex waves. We then study in detail the evolution of the following particular initial states of the vortex tube: (i) an axisymmetric pinch in the radius of the tube, (ii) a deflection in the location of the tube, and (iii) a flattening of the tube's cross-secton. All of these initial states are localized in the direction along the tube by weighting them with a Gaussian function. In each case, the initial perturbation is decomposed into packets of Kelvin vortex waves which then propagate outward along the vortex tube. We discuss the physical mechanisms responsible for the propagation of the wave packets, and study the consequences of wave dispersion for the solution.

51 citations


Journal ArticleDOI
TL;DR: In this paper, hourly radar measurements of mesopause-region winds are used to form a mock data base which can be used to gain insight into implications of the aforementioned problems; the use of actual measurements introduces a realistic element of geophysical temporal variability.
Abstract: . Interpretations of space-based measurements of atmospheric parameters in the mesosphere and thermosphere are complicated by large local-time variations at these altitudes. For this reason, satellite orbits are often preferred which precess through all local times one or more times per season. However, the local-time structure of the atmosphere is inherently non-stationary, which can lead to sampling and aliasing difficulties when attempting to deconvolve the measurements into zonal mean and tidal components. In the present study, hourly radar measurements of mesopause-region winds are used to form a mock data base which can be used to gain insight into implications of the aforementioned problems; the use of actual measurements introduces a realistic element of geophysical temporal variability. Assuming zonal symmetry (i.e., migrating tides superimposed on a zonal mean circulation), the radar measurements are sampled from the satellite perspective for orbital inclinations of 57° and 70°, and compared to the ground or true perspective. These comparisons provide realistic estimates of the errors to be expected when attempting to derive mean and tidal components from space-based measurements. For both diurnal and semidiurnal components, and the quoted satellite inclinations, acceptable errors (3–4m/srms) are obtained for data covering 24h local time (i.e., ascending plus descending nodes); the corresponding errors for single-node data (12h local-time coverage) are of order 8–11m/s, and therefore may not represent reliable estimates of the actual tidal components. There exist certain caveats in connection with the latter conclusion which are discussed.

44 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the mesosphere-stratosphere-troposphere (MST) radar at Jicamarca, Peru, from three 10-day experiments in January 1993, March 1994, and August 1994.
Abstract: We present results obtained with the mesosphere-stratosphere-troposphere (MST) radar at Jicamarca, Peru, from three 10-day experiments in January 1993, March 1994, and August 1994. Horizontal and vertical velocities were measured over ranges spanning the lower part of the stratosphere and most of the mesosphere. In the stratosphere, the fluctuating part of the wind field was found to be dominated by inertia-gravity waves. Sinusoids of different period were fit to the velocity time series using a least squares procedure. The dominant periods of the inertia-gravity wave motions were found to be 1.5 days for the January 1993 experiment and 2.1 days for the August 1994 experiment. For the January 1993 experiment, the amplitudes and phases of the inertia-gravity wave oscillations were extracted for the vertical as well as the horizontal components. The vertical amplitude of the 1.5-day period wave was small (<0.1 ms−1), but measurable with the Jicamarca radar. The intrinsic periods of the inertia-gravity waves were inferred from the fits using two different methods. The first method predicted the intrinsic period using the orbital ellipses traced out in time by fits to the horizontal winds. The second method used information taken from the vertical as well as the horizontal fits. The values of intrinsic period made using the second method were found to have much less scatter than the values inferred solely from the orbital ellipses. The momentum flux estimates in both the stratosphere and mesosphere were found to depend significantly on the exact methodology used. A technique was adopted whereby estimates were formed only when radial velocities were measured simultaneously on both beams of a coplanar beam pair. Most of the total wave stress was usually contributed by waves at periods ≥4 hours in the stratosphere and ≥1 hour in the mesosphere. In the stratosphere, localized layers of enhanced momentum flux were sometimes observed. The obvious anticorrelation between the shear of the mean wind and the momentum flux in these layers suggests that they were caused by in situ generation of waves by the Kelvin-Helmholtz instability, rather than gravity waves propagating from lower levels. At short periods, momentum flux spectra in the stratosphere and mesosphere showed numerous positive and negative peaks. A correlation analysis revealed that the high-frequency peaks were associated with discrete wave packets. The short-scale waves associated with these packets were fairly isotropic in their direction of propagation, and due to cancellation they contributed little net momentum.

26 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an analysis of the wind and temperature measurements made by rocket, radar, and satellite instrumentation in the equatorial and subtropical middle atmosphere accompanying the MALTED/CADRE campaign conducted at Alcantara, Brazil during August 1994.
Abstract: We present an analysis of the wind and temperature measurements made by rocket, radar, and satellite instrumentation in the equatorial and subtropical middle atmosphere accompanying the MALTED/CADRE campaign conducted at Alcantara, Brazil during August 1994. Measured mean winds and temperatures extended from ∼10 to 110 km, exhibited general consistency between instruments, and revealed an oscillatory nature of the mean zonal wind with altitude at equatorial latitudes. MF radar measurements of tidal structures showed these to exhibit variability on ∼8- and 16-day periods, but to be largely uncorrelated in time. Two-day wave structures displayed the same periodicities, but were well correlated among sites at northern and equatorial latitudes. Rocket and radar measurements at smaller scales of motion revealed inertia-gravity waves having significant temporal coherence, quadrature correlations between components indicating clear directions of propagation, and momentum flux and mean wind correlations indicative of gravity wave filtering processes. Rocket estimates of diurnal tidal amplitudes suggest that the diurnal tide achieves convectively unstable amplitudes in the upper equatorial mesosphere.

23 citations


Journal ArticleDOI
TL;DR: The International Guara Rocket Campaign for Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) as mentioned in this paper was conducted from the Alcântara rocket site in northeastern Brazil to study equatorial dynamics, irregularities, and instabilities in the ionosphere.
Abstract: In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcântara rocket site in northeastern Brazil as part of the International Guara Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (∼0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.

20 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined global circulation patterns as depicted by long time series of radiosonde profiles, analyses from the European Center for Medium Range Weather Forecasting (ECMWF), and winds from the High Resolution Doppler Imager (HRDI) aboard the Upper Atmosphere Research Satellite.
Abstract: Radar observations of winds and momentum fluxes in the stratosphere and mesosphere at the Jicamarca Radio Observatory in Peru ( JRO; 12°S, 77°W) were taken during three 10 day campaigns in January 1993, March 1994, and August 1994. In order to interpret features in the campaign mean JRO wind profiles, we examined global circulation patterns as depicted by long time series of radiosonde profiles, analyses from the European Center for Medium Range Weather Forecasting (ECMWF), and winds from the High Resolution Doppler Imager (HRDI) aboard the Upper Atmosphere Research Satellite. In the tropical stratosphere, large-scale analyses show that a geographically varying annual cycle significantly affects winds over JRO, as does the quasi-biennial oscillation ( QBO). The spatial structure of the annual cycle and QBO is shown for the three campaigns, emphasizing the upward influence of subtropical tropospheric monsoon anticyclones. These anticyclones tilt poleward and merge zonally, underlying the zonal summer easterlies, which also merge zonally and tilt poleward with altitude. The annual cycle at Singapore includes a substantial easterly acceleration during March-August, which causes an apparent stalling of descending QBO westerlies or a more rapid descent of QBO easterlies. In the mesosphere, JRO and HRDI winds agree reasonably well, with zonal winds over JRO varying on a semiannual basis and meridional winds exhibiting structures expected from the diurnal tide. For vertical motion, separate north-south and east-west beam pair estimates agree, yet campaign-averaged vertical motions are large: ∼1–5 cm/s in the stratosphere and ∼ 10–50 cm/s in the mesosphere. In both the stratosphere and mesosphere, vertical winds are anticorrelated with horizontal wind. Possible explanations for the large vertical motions include aspect sensitivity and the diurnal tide. Uncertainties in the meaning of radar vertical motions create a challenge for interpreting momentum fluxes.

20 citations


Journal Article
TL;DR: The International Guard Rocket Campaign (MALTED) as mentioned in this paper was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Launch Program to study equatorial dynamics, irregularities, and instabilities in the ionosphere.
Abstract: In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.

10 citations