scispace - formally typeset
Search or ask a question

Showing papers by "David C. Fritts published in 2018"


Journal ArticleDOI
TL;DR: In this paper, the existence of plasma irregularities occur in the mid-latitude spread F region of the ionospheric F-layer during a period of "mid-latitudes spread F", a space-weather phenomenon relatively common at middle latitudes in summer months characterized by instability and electron density irregularities in the bottomside of the F layer.
Abstract: Profiles of the electron number density in the ionosphere are observed at the Arecibo Radio Observatory in Puerto Rico on a regular basis. Here, we report on recent observations showing anomalous irregularities in the density profiles at altitudes >~300 km. The irregularities occurred during a period of “mid-latitude spread F,” a space-weather phenomenon relatively common at middle latitudes in summer months characterized by instability and electron density irregularities in the bottomside of the ionospheric F layer. Remarkably, electron density irregularities extended well above the layer, through the ionization peak and into the topside which is regarded as being stable. Neither the neutral atmosphere nor the ionosphere is thought to be able to support turbulence locally at this altitude. A numerical simulation is used to illustrate how a combination of atmospheric and plasma dynamics driven at lower altitudes could explain the phenomenon. The ionosphere can give rise to irregularities that can interfere with radio communication, navigation and satellite systems. Here the authors present unique observations from the Arecibo Radio Observatory in Puerto Rico to reveal the existence of plasma irregularities occur in the mid-latitude F-region.

40 citations


Journal ArticleDOI
TL;DR: In this article, in situ and remote sensing measurements aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V (GV) research aircraft and the German Aerospace Center Falcon were obtained during Falcon flights FF9 and FF10 and GV Research Flight RF22 performed over Mount Cook, New Zealand, on 12 and 13 July 2014.
Abstract: Mountain wave (MW) propagation and dynamics extending into the upper mesosphere accompanying weak forcing are examined using in situ and remote‐sensing measurements aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V (GV) research aircraft and the German Aerospace Center Falcon. The measurements were obtained during Falcon flights FF9 and FF10 and GV Research Flight RF22 of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) performed over Mount Cook, New Zealand, on 12 and 13 July 2014. In situ measurements revealed both trapped lee waves having zonal wavelengths of λₓ ~ 12 km and less, and larger‐scale, vertically propagating MWs primarily at λₓ ~ 20–60 km and ~100–300 km extending from west to ~400 km east of Mount Cook. GV Rayleigh lidar measurements from 25‐ to 60‐km altitudes showed that the weak forcing and zonal winds that increased from ~12 m/s at 12 km to ~40 and 130 m/s at 30 and 55 km, respectively, enabled largely linear MW propagation and strong amplitude growth with altitude into the mesosphere. GV Na lidar and airglow imager measurements revealed an extensive MW response from ~70 to 87 km with large amplitudes and vertical displacements at λₓ ~ 40–300 km but with both decreasing with altitude approaching a critical level near 90 km. These MWs exhibited large‐scale MW breaking and among the largest sustained momentum fluxes observed in the mesosphere. UK Met Office Unified Model simulations of the RF22 MW event captured many aspects of the observed MW field and revealed that despite the dominant large‐scale MW responses in the stratosphere, the major momentum fluxes accompanied smaller‐scale waves.

38 citations


Journal ArticleDOI
TL;DR: In this paper, a multiscale spectrum of mountain waves (MWs) was observed during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight over the South Island of New Zealand, where high-resolution measurements of sodium densities were available from ~70 to 100 km for the duration of this flight.
Abstract: During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight over the South Island of New Zealand, a multiscale spectrum of mountain waves (MWs) was observed. High‐resolution measurements of sodium densities were available from ~70 to 100 km for the duration of this flight. A comprehensive technique is presented for obtaining temperature perturbations, T′, from sodium mixing ratios over a range of altitudes, and these T′ were used to calculate the momentum flux (MF) spectra with respect to horizontal wavelengths, λH, for each flight segment. Spectral analysis revealed MWs with spectral power centered at λH of ~80, 120, and 220 km. The temperature amplitudes of these MWs varied between the four cross‐mountain flight legs occurring between 6:10UT and 9:10UT. The average spectral T′ amplitudes near 80 km in altitude ranged from 7–13 K for the 220 km λH MW and 4–8 K for the smaller λH MWs. These amplitudes decayed significantly up to 90 km, where a critical level for MWs was present. The average MF per unit mass near 80 km in altitude ranged from ~13 to 60 m²/s² across the varying spectra over the duration of the research flight and decayed to ~0 by 88 km in altitude. These MFs are large compared to zonal means and highlight the importance of MWs in the momentum budget of the mesosphere and lower thermosphere at times when they reach these altitudes.

13 citations


Journal ArticleDOI
TL;DR: Observations of turbulence and waves made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) suggest that there may be reduced turbulence during disturbed winters.
Abstract: Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25-26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These low levels of turbulence were measured after a minor sudden stratospheric warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and model studies, these observations suggest that there may be reduced turbulence during disturbed winters.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky air-glow imager installed at ComandanteFerraz Antarctic Station (EACF), located on King George Island in theⓘAntarctic Peninsula, were investigated.
Abstract: . The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2 , was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2 < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88–92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases. Keywords. Atmospheric composition and structure (airglow and aurora) – meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)

9 citations