scispace - formally typeset
Search or ask a question
Author

David C. Fritts

Bio: David C. Fritts is an academic researcher from Cora. The author has contributed to research in topics: Gravity wave & Thermosphere. The author has an hindex of 66, co-authored 227 publications receiving 14924 citations. Previous affiliations of David C. Fritts include University of Colorado Boulder & National Waste & Recycling Association.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analytic Fourier integral solution of the initial-value problem is obtained in analytic form to facilitate comparison with the previous two-dimensional results, and the results are extended to a three-dimensional jet source.
Abstract: A previous study of inertio–gravity wave motions radiating from a two-dimensional ageostrophic Gaussian jet is extended here to a three-dimensional jet source. Fourier integral solutions of the initial-value problem are obtained in analytic form to facilitate comparison with the previous two-dimensional results. For an initial disturbance elongated along the jet axis, the wave solutions near the midpoint are nearly indistinguishable from those obtained in two dimensions and approach those solutions as the jet increases in length. At locations not symmetric with respect to the longitudinal jet axis, inertio–gravity wave structure departs increasingly from the two-dimensional results. In such cases, the early response is determined by the nearby jet structure and exhibits propagation primarily normal to the jet axis. At later times, however, the response is due to the initial disturbance at other locations along the jet axis and reveals a tendency for propagation parallel to the jet. The mean motio...

132 citations

Journal ArticleDOI
TL;DR: In this paper, small-scale structures were observed for about 20 min and appear to be associated with an overturned or breaking atmospheric gravity wave as observed by the lidar, which had a horizontal wavelength of between 500 and 1500 km, a vertical wavelength of about 6 km and an observed period of between 4 and 6 hours.
Abstract: The Collaborative Observations Regarding the Nightglow (CORN) campaign took place at the Urbana Atmospheric Observatory during September 1992. The instrumentation included, among others, the Aerospace Corporation narrowband nightglow CCD camera, which observes the OH Meinel (6–2) band (hereafter designated OH) and the O2 atmospheric (0–1) band (hereafter designated O2) nightglow emissions; the University of Illinois Na density/temperature lidar; and the University of Illinois MF radar. Here we report on observations of small-scale (below 10-km horizontal wavelength) structures in the OH airglow images obtained with the CCD camera. These small-scale structures were aligned perpendicular to the motion of 30- to 50-km horizontal wavelength waves, which had observed periods of about 10–20 min. The small-scale structures were present for about 20 min and appear to be associated with an overturned or breaking atmospheric gravity wave as observed by the lidar. The breaking wave had a horizontal wavelength of between 500 and 1500 km, a vertical wavelength of about 6 km, and an observed period of between 4 and 6 hours. The motion of this larger-scale wave was in the same direction as the ≈30- to 50-km waves. While such small-scale structures have been observed before, and have been previously described as ripple-type wave structures [Taylor and Hapgood, 1990], these observations are the first which can associate their occurrence with independent evidence of wave breaking. The characteristics of the observed small-scale structures are similar to the vortices generated during wave breakdown in three dimensions in simulations described in Part 2 of this study [Fritts et al., this issue]. The results of this study support the idea that ripple type wave structures we observe are these vortices generated by convective instabilities rather than structures generated by dynamical instabilities.

132 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear, compressible, spectral collocation code is employed to examine gravity wave breaking in two and three spatial dimensions, and two-dimensional results exhibit a structure consistent with previous efforts and suggest wave instability occurs via convective rolls aligned normal to the gravity wave motion.
Abstract: A nonlinear, compressible, spectral collocation code is employed to examine gravity wave breaking in two and three spatial dimensions. Two-dimensional results exhibit a structure consistent with previous efforts and suggest wave instability occurs via convective rolls aligned normal to the gravity wave motion (uniform in the spanwise direction). Three-dimensional results demonstrate, in contrast, that the preferred mode of instability is a series of counterrotating vortices oriented along the gravity wave motion, elongated in the streamwise direction, and confined to the region of convective instability within the wave field. Comparison of the two-dimensional results (averaged spanwise) for both two- and three-dimensional simulations reveals that vortex generation contributes to much more rapid wave field evolution and decay, with rapid restoration of near-adiabatic lapse rates and stronger constraints on wave energy and momentum fluxes. These results also demonstrate that two-dimensional models are unable to describe properly the physics or the consequences of the wave breaking process, at least for the flow parameters examined in this study. The evolution and structure of the three-dimensional instability, its influences on the gravity wave field, and the subsequent transition to quasi-isotropic small-scale motions are the subjects of companion papers by Fritts et al. (this issue) and Isler et al. (this issue).

131 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the implications of a nonuniform turbulent diffusion due to the IOM saturation of a gravity wave via convective instabilities and found that both wave and turbulence fluxes of heat can be reduced dramatically, depending on the amplitude of the wave motion and the extent to which the turbulent diffusion is localized.
Abstract: We consider the implications of a nonuniform turbulent diffusion due to the IOM saturation of a gravity wave via convective instabilities It is found that both wave and turbulence fluxes of heat can be reduced dramatically, depending on the amplitude of the wave motion and the extent to which the turbulent diffusion is localized These results suggest that previous studies that assumed a uniform turbulent diffusion may have overestimated the beat and constituent fluxes due to gravity wave saturation

128 citations

Journal ArticleDOI
TL;DR: In this article, a three-dimensional simulation of a breaking internal gravity wave in a stratified, compressible, sheared fluid is used to examine the vorticity dynamics accompanying the transition from laminar to turbulent flow.
Abstract: A three-dimensional simulation of a breaking internal gravity wave in a stratified, compressible, sheared fluid is used to examine the vorticity dynamics accompanying the transition from laminar to turbulent flow. Our results show that baroclinic sources contribute preferentially to eddy vorticity generation during the initial convective instability of the wave field; the resulting counter-rotating vortices are aligned with the external shear flow. These vortices enhance the spanwise vorticity of the shear flow via stretching and distort the spanwise vorticity via advective tilting. The resulting vortex sheets undergo a dynamical (Kelvin–Helmholtz) instability which rolls the vortex sheets into tubes. These vortex tubes link with the original streamwise convective rolls to produce a collection of intertwined vortex loops. A companion paper (Part 2) describes the subsequent interactions among and the perturbations to these vortices that drive the evolution toward turbulence and smaller scales of motion.

127 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
TL;DR: In this article, a review of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape are discussed.
Abstract: [1] Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower-atmospheric effects, the major wave influences occur in the middle atmosphere, between ∼ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large-scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large-scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered.

2,206 citations

Journal ArticleDOI
28 Jan 1983-Science
TL;DR: Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.
Abstract: The potential for sea ice-albedo feedback to give rise to nonlinear climate change in the Arctic Ocean – defined as a nonlinear relationship between polar and global temperature change or, equivalently, a time-varying polar amplification – is explored in IPCC AR4 climate models. Five models supplying SRES A1B ensembles for the 21 st century are examined and very linear relationships are found between polar and global temperatures (indicating linear Arctic Ocean climate change), and between polar temperature and albedo (the potential source of nonlinearity). Two of the climate models have Arctic Ocean simulations that become annually sea ice-free under the stronger CO 2 increase to quadrupling forcing. Both of these runs show increases in polar amplification at polar temperatures above-5 o C and one exhibits heat budget changes that are consistent with the small ice cap instability of simple energy balance models. Both models show linear warming up to a polar temperature of-5 o C, well above the disappearance of their September ice covers at about-9 o C. Below-5 o C, surface albedo decreases smoothly as reductions move, progressively, to earlier parts of the sunlit period. Atmospheric heat transport exerts a strong cooling effect during the transition to annually ice-free conditions. Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.

1,356 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature.
Abstract: The implementation of the Global Positioning System (GPS) network of satellites and the development of small, high-performance instrumentation to receive GPS signals have created an opportunity for active remote sounding of the Earth's atmosphere by radio occultation at comparatively low cost. A prototype demonstration of this capability has now been provided by the GPS/MET investigation. Despite using relatively immature technology, GPS/MET has been extremely successful [Ware et al., 1996; Kursinski et al., 1996], although there is still room for improvement. The aim of this paper is to develop a theoretical estimate of the spatial coverage, resolution, and accuracy that can be expected for atmospheric profiles derived from GPS occultations. We consider observational geometry, attenuation, and diffraction in defining the vertical range of the observations and their resolution. We present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature. Typically, the vertical resolution of the observations ranges from 0.5 km in the lower troposphere to 1.4 km in the middle atmosphere. Results indicate that useful profiles of refractivity can be derived from ∼60 km altitude to the surface with the exception of regions less than 250 m in vertical extent associated with high vertical humidity gradients. Above the 250 K altitude level in the troposphere, where the effects of water are negligible, sub-Kelvin temperature accuracy is predicted up to ∼40 km depending on the phase of the solar cycle. Geopotential heights of constant pressure levels are expected to be accurate to ∼10 m or better between 10 and 20 km altitudes. Below the 250 K level, the ambiguity between water and dry atmosphere refractivity becomes significant, and temperature accuracy is degraded. Deep in the warm troposphere the contribution of water to refractivity becomes sufficiently large for the accurate retrieval of water vapor given independent temperatures from weather analyses [Kursinski et al., 1995]. The radio occultation technique possesses a unique combination of global coverage, high precision, high vertical resolution, insensitivity to atmospheric particulates, and long-term stability. We show here how these properties are well suited for several applications including numerical weather prediction and long-term monitoring of the Earth's climate.

1,249 citations