scispace - formally typeset
Search or ask a question
Author

David C. Henshall

Bio: David C. Henshall is an academic researcher from University of Medicine and Health Sciences. The author has contributed to research in topics: Epilepsy & Status epilepticus. The author has an hindex of 55, co-authored 229 publications receiving 10058 citations. Previous affiliations of David C. Henshall include Royal College of Surgeons in Ireland & Science Foundation Ireland.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that neurogenesis is increased in AD hippocampus, where it may give rise to cells that replace neurons lost in the disease, and that stimulating hippocampal neuroGenesis might provide a new treatment strategy.
Abstract: Neurogenesis, which persists in the adult mammalian brain, may provide a basis for neuronal replacement therapy in neurodegenerative diseases like Alzheimer's disease (AD). Neurogenesis is increased in certain acute neurological disorders, such as ischemia and epilepsy, but the effect of more chronic neurodegenerations is uncertain, and some animal models of AD show impaired neurogenesis. To determine how neurogenesis is affected in the brains of patients with AD, we investigated the expression of immature neuronal marker proteins that signal the birth of new neurons in the hippocampus of AD patients. Compared to controls, Alzheimer's brains showed increased expression of doublecortin, polysialylated nerve cell adhesion molecule, neurogenic differentiation factor and TUC-4. Expression of doublecortin and TUC-4 was associated with neurons in the neuroproliferative (subgranular) zone of the dentate gyrus, the physiological destination of these neurons (granule cell layer), and the CA1 region of Ammon's horn, which is the principal site of hippocampal pathology in AD. These findings suggest that neurogenesis is increased in AD hippocampus, where it may give rise to cells that replace neurons lost in the disease, and that stimulating hippocampal neurogenesis might provide a new treatment strategy.

981 citations

Journal ArticleDOI
TL;DR: Silencing miR-134 exerts prolonged seizure-suppressant and neuroprotective actions; determining whether these are anticonvulsant effects or are truly antiepileptogenic effects requires additional experimentation.
Abstract: Temporal lobe epilepsy is a common, chronic neurological disorder characterized by recurrent spontaneous seizures. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate post-transcriptional expression of protein-coding mRNAs, which may have key roles in the pathogenesis of neurological disorders. In experimental models of prolonged, injurious seizures (status epilepticus) and in human epilepsy, we found upregulation of miR-134, a brain-specific, activity-regulated miRNA that has been implicated in the control of dendritic spine morphology. Silencing of miR-134 expression in vivo using antagomirs reduced hippocampal CA3 pyramidal neuron dendrite spine density by 21% and rendered mice refractory to seizures and hippocampal injury caused by status epilepticus. Depletion of miR-134 after status epilepticus in mice reduced the later occurrence of spontaneous seizures by over 90% and mitigated the attendant pathological features of temporal lobe epilepsy. Thus, silencing miR-134 exerts prolonged seizure-suppressant and neuroprotective actions; determining whether these are anticonvulsant effects or are truly antiepileptogenic effects requires additional experimentation.

422 citations

Journal ArticleDOI
TL;DR: This review presents the cumulated understanding of stress-activated signaling pathways and apoptotic pathways in the research areas of ischemic injury, TBI and epilepsy and that gathered from concerted research efforts in oncology and other diseases.

296 citations

Journal ArticleDOI
01 Nov 2004-Stroke
TL;DR: It is postulated that LPS preconditioning modulates the cellular inflammatory response after cerebral ischemia, resulting in neuroprotection against ischemic brain injury in a mouse model of stroke.
Abstract: Background and Purpose— Tolerance to ischemic brain injury is induced by several preconditioning stimuli, including lipopolysaccharide (LPS). A small dose of LPS given systemically confers ischemic protection in the brain, a process that appears to involve activation of an inflammatory response before ischemia. We postulated that LPS preconditioning modulates the cellular inflammatory response after cerebral ischemia, resulting in neuroprotection. Methods— Mice were treated with LPS (0.2 mg/kg) 48 hours before ischemia induced by transient middle cerebral artery occlusion (MCAO). The infarct was measured by 2,3,5-triphenyltetrazolium chloride staining. Microglia/macrophage responses after MCAO were assessed by immunofluorescence and flow cytometry. The effect of MCAO on white blood cells in the brain and peripheral circulation was measured by flow cytometry 48 hours after MCAO. Results— LPS preconditioning induced significant neuroprotection against MCAO. Administration of low-dose LPS before MCAO prevent...

232 citations

Journal ArticleDOI
TL;DR: Data indicate that an antiexcitotoxic mechanism is unlikely to mediate the neuroprotective action of FK506 in focal cerebral ischemia, and the finding that intravenous cyclosporin A (20 mg/kg) reduced ischemic cortical damage is consistent with the proposed role of calcineurin.
Abstract: The cellular mechanisms underlying the neuroprotective action of the immunosuppressant FK506 in experimental stroke remain uncertain, although in vitro studies have implicated an antiexcitotoxic action involving nitric oxide and calcineurin. The present in vivo study demonstrates that intraperitoneal pretreatment with 1 and 10 mg/kg FK506, doses that reduced the volume of ischemic cortical damage by 56-58%, did not decrease excitotoxic damage induced by quinolinate, NMDA, and AMPA. Similarly, intravenous FK506 did not reduce the volume of striatal quinolinate lesions at a dose (1 mg/kg) that decreased ischemic cortical damage by 63%. The temporal window for FK506 neuroprotection was defined in studies demonstrating efficacy using intravenous administration at 120 min, but not 180 min, after middle cerebral artery occlusion. The noncompetitive NMDA receptor antagonist MK801 reduced both ischemic and excitotoxic damage. Histopathological data concerning striatal quinolinate lesions were replicated in neurochemical experiments. MK801, but not FK506, attenuated the loss of glutamate decarboxylase and choline acetyltransferase activity induced by intrastriatal injection of quinolinate. The contrasting efficacy of FK506 in ischemic and excitotoxic lesion models cannot be explained by drug pharmacokinetics, because brain FK506 content rose rapidly using both treatment protocols and was sustained at a neuroprotective level for 3 d. Although these data indicate that an antiexcitotoxic mechanism is unlikely to mediate the neuroprotective action of FK506 in focal cerebral ischemia, the finding that intravenous cyclosporin A (20 mg/kg) reduced ischemic cortical damage is consistent with the proposed role of calcineurin.

231 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: Postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and the development of diagnostic criteria that are now used worldwide, and these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloids PET and volumetric MRI.
Abstract: The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI.

2,449 citations

Journal ArticleDOI
TL;DR: Advances in the understanding of adult neurogenesis will not only shed light on the basic principles of adult plasticity, but also may lead to strategies for cell replacement therapy after injury or degenerative neurological diseases.
Abstract: Forty years since the initial discovery of neurogenesis in the postnatal rat hippocampus, investigators have now firmly established that active neurogenesis from neural progenitors continues throughout life in discrete regions of the central nervous systems (CNS) of all mammals, including humans. Significant progress has been made over the past few years in understanding the developmental process and regulation of adult neurogenesis, including proliferation, fate specification, neuronal maturation, targeting, and synaptic integration of the newborn neurons. The function of this evolutionarily conserved phenomenon, however, remains elusive in mammals. Adult neurogenesis represents a striking example of structural plasticity in the mature CNS environment. Advances in our understanding of adult neurogenesis will not only shed light on the basic principles of adult plasticity, but also may lead to strategies for cell replacement therapy after injury or degenerative neurological diseases.

1,817 citations