scispace - formally typeset
Search or ask a question
Author

David C. Jefferson

Other affiliations: Jet Propulsion Laboratory
Bio: David C. Jefferson is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Mars Exploration Program & Orbiter. The author has an hindex of 8, co-authored 28 publications receiving 2918 citations. Previous affiliations of David C. Jefferson include Jet Propulsion Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: This work determines precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers, and analysis of data from hundreds to thousands of sites every day with 40-Mflop computers yields results comparable in quality to the simultaneous analysis of all data.
Abstract: Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Their, data from the local network are analyzed by estimating receiver- specific parameters with receiver-specific data satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every (lay with 40-Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.

3,013 citations

Journal ArticleDOI
28 Jan 1993-Nature
TL;DR: In this article, the combined geodetic moment for the Landers and Big Bear earthquakes was analyzed and shown to be dominantly symmetric and the rupture extended farther south on the Johnson Valley fault than has been mapped on the basis of ground offsets.
Abstract: Displacements observed for the Landers earthquake indicate that the depth of the bottom of the rupture is shallower towards the northern end. Displacements were dominantly symmetric and the rupture extended farther south on the Johnson Valley fault than has been mapped on the basis of surface ground offsets. The combined geodetic moment for the Landers and Big Bear earthquakes agrees well with teleseismic estimates.

74 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply two different inverse methods to understand the source of the seismic strain in NW Costa Rica and compare fault-locking models derived using a singular value decomposition inversion with that of a simulated annealing global optimization approach.
Abstract: Global Positioning System (GPS) observations in Costa Rica from 1994 to 1997 reveal a complex pattern of motion consistent with the superposition of seismic cycle and secular plate margin deformation. In the south, velocity vectors are consistent with motion of the Panama Block plus postseismic deformation following the 1991 Limon earthquake and interseismic strain due to partial locking of the Middle America Trench (MAT) thrust. In the northwest, sites west of the volcanic arc are moving to the NW as a forearc sliver. Superimposed on this sliver motion are vertical and horizontal interseismic deformations from the adjacent Nicoya segment of the MAT. We apply two different inverse methods to understand the source of the seismic strain in NW Costa Rica. We compare fault-locking models derived using a singular value decomposition inversion with that of a simulated annealing global optimization approach. Both methods yield similar models for partial locking of the thrust interface beneath the Nicoya Peninsula. Our results define an area of nearly fully locked fault beneath the outer coast of the southern portion of the peninsula, with somewhat lower coupling beneath the northern half and with low coupling elsewhere. These initial results show the promise for detailed imaging of the locked portion of a thrust interface responsible for future large subduction zone earthquakes.

63 citations

Journal ArticleDOI
01 Aug 1999-Geology
TL;DR: Geodetic measurements using the Global Positioning System and other techniques show north-south shortening near Los Angeles to be fastest across the northern part of the metropolitan area, where an ESE-striking, 5- to 40-km-wide belt lying to the south of San Gabriel Mountains and to the north of downtown and West Los Angeles is shortening at 5 mm/yr as mentioned in this paper.
Abstract: Geodetic measurements using the Global Positioning System and other techniques show north-south shortening near Los Angeles to be fastest across the northern part of the metropolitan area, where an ESE-striking, 5- to 40-km-wide belt lying to the south of San Gabriel Mountains and to the north of downtown and West Los Angeles is shortening at 5 mm/yr.

51 citations

Journal ArticleDOI
TL;DR: In this paper, a linear fit to the full span of data shows agreement between the two frames at the level of 1 −1 and 0 −0.1 −ppb/year.
Abstract: The Global Positioning System is a constellation of 24–28 satellites, which can be used to define a global terrestrial reference frame. Daily offsets between a GPS defined frame and ITRF2000 have been estimated using more than a decade of GPS observations from 1990–2001. A linear fit to the full span of data shows agreement between the two frames at the level of –1 ppb and –0.1 ppb/year for scale, 5 mm and 0 mm/year for the X component of center of mass, –2 mm and –3 mm/year for the Y component, and 4 mm and 6 mm/year for the Z component. GPS is a viable tool for defining the global reference frame either alone, or in combination with other geodetic techniques.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work determines precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers, and analysis of data from hundreds to thousands of sites every day with 40-Mflop computers yields results comparable in quality to the simultaneous analysis of all data.
Abstract: Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Their, data from the local network are analyzed by estimating receiver- specific parameters with receiver-specific data satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every (lay with 40-Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.

3,013 citations

Journal ArticleDOI
TL;DR: MORVEL as discussed by the authors is a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface.
Abstract: SUMMARY We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit—MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6–2.6 mm yr−1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca–Antarctic and Nazca–Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also indicates that motions across the Caribbean–North America and Caribbean–South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia–Eurasia and India–Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific–North America plate motion in western North America differ by only 2.6 ± 1.7 mm yr−1, ≈25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific–North America motion over the past 1–3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific–Cocos–Nazca and Sur–Nubia–Antarctic, fail closure, with respective linear velocities of non-closure of 14 ± 5 and 3 ± 1 mm yr−1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but—absent any unrecognized systematic errors—the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

2,089 citations

Journal ArticleDOI
08 Jul 1993-Nature
TL;DR: In this article, the authors used Synthetic Aperture Radar (SAR) interferometry to capture the movements produced by the 1992 earthquake in Landers, California, by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake.
Abstract: GEODETIC data, obtained by ground- or space-based techniques, can be used to infer the distribution of slip on a fault that has ruptured in an earthquake. Although most geodetic techniques require a surveyed network to be in place before the earthquake1–3, satellite images, when collected at regular intervals, can capture co-seismic displacements without advance knowledge of the earthquake's location. Synthetic aperture radar (SAR) interferometry, first introduced4 in 1974 for topographic mapping5–8 can also be used to detect changes in the ground surface, by removing the signal from the topography9,10. Here we use SAR interferometry to capture the movements produced by the 1992 earthquake in Landers, California11. We construct an interferogram by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake. The observed changes in range from the ground surface to the satellite agree well with the slip measured in the field, with the displacements measured by surveying, and with the results of an elastic dislocation model. As a geodetic tool, the SAR interferogram provides a denser spatial sampling (100 m per pixel) than surveying methods1–3 and a better precision (∼3 cm) than previous space imaging techniques12,13.

1,970 citations

Journal ArticleDOI
TL;DR: This paper will describe the approach, summarize the adjustment procedure, and specify the earth- and space-based models that must be implemented to achieve cm-level positioning in static mode and station tropospheric zenth path delays with cm precision.
Abstract: The contribution details a post-processing approach that used undifferentiated dual-frequency pseudorange and carrier phase observations along with IGS procise orbit products, for stand-alone precise geodetic point positioning (static or kinematic) with cm precision. This is possible if one takes advantage of the satellite clock estimates available with the satellite coordinates in the IGS precise orbit products and models systematic effects that cause cm variations in the satelite to user range. This paper will describe the approach, summarize the adjustment procedure, and specify the earth- and space-based models that must be implementetd to achieve cm-level positioning in static mode. Furthermore, station tropospheric zenth path delays with cm precision and GPS receiver clock estimates procise to 0.1 ns are also obtained. © 2001 John Wiley & Sons, Inc.

1,200 citations

Journal ArticleDOI
19 Oct 2001-Science
TL;DR: Global Positioning System (GPS) measurements in China indicate that crustal shortening accommodates most of India's penetration into Eurasia, but the Tibetan plateau south of the Kunlun and Ganzi-Mani faults is moving eastward relative to both India and Eurasia.
Abstract: Global Positioning System (GPS) measurements in China indicate that crustal shortening accommodates most of India's penetration into Eurasia. Deformation within the Tibetan Plateau and its margins, the Himalaya, the Altyn Tagh, and the Qilian Shan, absorbs more than 90% of the relative motion between the Indian and Eurasian plates. Internal shortening of the Tibetan plateau itself accounts for more than one-third of the total convergence. However, the Tibetan plateau south of the Kunlun and Ganzi-Mani faults is moving eastward relative to both India and Eurasia. This movement is accommodated through rotation of material around the eastern Syntaxis. The North China and South China blocks, east of the Tibetan Plateau, move coherently east-southeastward at rates of 2 to 8 millimeters per year and 6 to 11 millimeters per year, respectively, with respect to the stable Eurasia.

1,019 citations