scispace - formally typeset
Search or ask a question
Author

David Cheng

Bio: David Cheng is an academic researcher from Victor Chang Cardiac Research Institute. The author has contributed to research in topics: Myeloperoxidase & Morris water navigation task. The author has an hindex of 13, co-authored 14 publications receiving 1078 citations. Previous affiliations of David Cheng include University of New South Wales & Neuroscience Research Australia.

Papers
More filters
Journal ArticleDOI
TL;DR: It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others, and the vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.
Abstract: Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clin...

571 citations

Journal ArticleDOI
TL;DR: It is shown that ABCA7 loss doubled insoluble Aβ levels and thioflavine-S–positive plaques in the brain and that this may be related to altered phagocyte function.
Abstract: ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and has been detected in macrophages, microglia, and neurons. ABCA7 promotes efflux of lipids from cells to apolipoproteins and can also regulate phagocytosis and modulate processing of amyloid precursor protein (APP) to generate the Alzheimer's disease (AD) amyloid-β (Aβ) peptide. Genome-wide association studies have indicated that ABCA7 single nucleotide polymorphisms confer increased risk for late-onset AD; however, the role that ABCA7 plays in the brain in the AD context is unknown. In the present study, we crossed ABCA7-deficient (A7(-/-)) mice with J20 amyloidogenic mice to address this issue. We show that ABCA7 loss doubled insoluble Aβ levels and thioflavine-S-positive plaques in the brain. This was not related to changes in APP processing (assessed by analysis of full-length APP and the APP β C-terminal fragment). Apolipoprotein E regulates cerebral Aβ homeostasis and plaque load; however, the apolipoprotein E concentration was not altered by ABCA7 loss. Spatial reference memory was significantly impaired in both J20 and J20/A7(-/-) mice compared with wild-type mice; however, there were no cognitive differences between J20 and J20/A7(-/-) mice. There were also no major differences detected in hippocampal or plaque-associated microglial/macrophage markers between J20 and J20/A7(-/-) mice, whereas the capacity for bone marrow-derived macrophages derived from A7(-/-) mice to take up oligomeric Aβ was reduced by 51% compared with wild-type mice. Our results suggest that ABCA7 plays a role in the regulation of Aβ homeostasis in the brain and that this may be related to altered phagocyte function.

170 citations

Journal ArticleDOI
TL;DR: This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice, providing the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.
Abstract: Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD) Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD Control and AD transgenic mice were treated orally from 25 months of age with CBD (20 mg/kg) daily for 8 months Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment CBD had no impact on anxiety or associative learning The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition

120 citations

Journal ArticleDOI
TL;DR: The findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD, as chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours.
Abstract: Patients suffering from Alzheimer’s disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces. Hallmark pathological changes in AD include the aggregation of amyloid-β (Aβ), tau protein hyperphosphorylation as well as pronounced neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage. The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents. Thus we determined the therapeutic-like effects of chronic CBD treatment (20 mg/kg, daily intraperitoneal injections for 3 weeks) on the APPswe/PS1∆E9 (APPxPS1) transgenic mouse model for AD in a number of cognitive tests, including the social preference test, the novel object recognition task and the fear conditioning paradigm. We also analysed the impact of CBD on anxiety behaviours in the elevated plus maze. Vehicle-treated APPxPS1 mice demonstrated impairments in social recognition and novel object recognition compared to wild type-like mice. Chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours. This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model. Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.

115 citations

Journal ArticleDOI
TL;DR: The data implicate MPO in atherosclerotic plaque instability and suggest that non-invasive imaging and pharmacological inhibition of plaque MPO activity hold promise for clinical translation in the management of high-risk coronary artery disease.
Abstract: Aims As the inflammatory enzyme myeloperoxidase (MPO) is abundant in ruptured human atherosclerotic plaques, we aimed to investigate the role of MPO as a potential diagnostic and therapeutic target for high-risk plaque. Methods and results We employed the tandem stenosis model of atherosclerotic plaque instability in apolipoprotein E gene knockout (Apoe-/-) mice. To test the role of MPO, we used Mpo-/-Apoe-/- mice and the 2-thioxanthine MPO inhibitor AZM198. In vivo MPO activity was assessed by liquid chromatography-tandem mass spectrometry detection of 2-chloroethidium generation from hydroethidine and by bis-5HT-DTPA-Gd (MPO-Gd) molecular magnetic resonance imaging (MRI), while plaque phenotype was verified histologically. Myeloperoxidase activity was two-fold greater in plaque with unstable compared with stable phenotype. Genetic deletion of MPO significantly increased fibrous cap thickness, and decreased plaque fibrin and haemosiderin content in plaque with unstable phenotype. AZM198 inhibited MPO activity and it also increased fibrous cap thickness and decreased fibrin and haemosiderin in plaque with unstable phenotype, without affecting lesion monocytes and red blood cell markers or circulating leukocytes and lipids. MPO-Gd MRI demonstrated sustained enhancement of plaque with unstable phenotype on T1-weighted imaging that was two-fold greater than stable plaque and was significantly attenuated by both AZM198 treatment and deletion of the Mpo gene. Conclusion Our data implicate MPO in atherosclerotic plaque instability and suggest that non-invasive imaging and pharmacological inhibition of plaque MPO activity hold promise for clinical translation in the management of high-risk coronary artery disease.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In a recent study, this article showed that low cerebrospinal fluid (CSF) Aβ42 and amyloid-PET positivity precede other AD manifestations by many years.
Abstract: Despite continuing debate about the amyloid β‐protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer9s disease (AD). Confirmation that presenilin is the catalytic site of γ‐secretase has provided a linchpin: all dominant mutations causing early‐onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild‐type APP gene in Down9s syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD. Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients9 brains can decrease synapse number, inhibit long‐term potentiation, and enhance long‐term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD‐relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau‐positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid‐PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.

3,824 citations

Journal ArticleDOI
TL;DR: Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions.
Abstract: Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.

2,101 citations

01 Jan 2007
TL;DR: The terms "antioxidant", "oxidative stress" and "oxoidative damage" are widely used but rarely defined as discussed by the authors, and a brief review attempts to define them and to examine the ways in which oxidative stress and oxidative damage can affect cell behaviour both in vivo and in cell culture, using cancer as an example.
Abstract: The terms 'antioxidant', 'oxidative stress' and 'oxidative damage' are widely used but rarely defined. This brief review attempts to define them and to examine the ways in which oxidative stress and oxidative damage can affect cell behaviour both in vivo and in cell culture, using cancer as an example.

1,309 citations

Journal ArticleDOI
TL;DR: Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.

935 citations

Journal ArticleDOI
TL;DR: Genetic or pharmacological enhancement of NRF2 activity in the renal tubules significantly ameliorates damage related to AKI and prevents AKI progression to chronic kidney disease (CKD) by reducing oxidative stress.
Abstract: Background: Nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor for the antioxidative stress response and it activates a variety

608 citations