scispace - formally typeset
Search or ask a question
Author

David D. Gonda

Bio: David D. Gonda is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Medicine & Perioperative. The author has an hindex of 21, co-authored 71 publications receiving 2589 citations. Previous affiliations of David D. Gonda include Boston Children's Hospital & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: The biologic processes that give rise to various types of EVs, including exosomes, microvesicles, retrovirus like particles, and apoptotic bodies are reviewed and clinical pertinence of these EVs to neuro-oncology will also be discussed.
Abstract: Recent studies suggest both normal and cancerous cells secrete vesicles into the extracellular space. These extracellular vesicles (EVs) contain materials that mirror the genetic and proteomic content of the secreting cell. The identification of cancer-specific material in EVs isolated from the biofluids (e.g., serum, cerebrospinal fluid, urine) of cancer patients suggests EVs as an attractive platform for biomarker development. It is important to recognize that the EVs derived from clinical samples are likely highly heterogeneous in make-up and arose from diverse sets of biologic processes. This article aims to review the biologic processes that give rise to various types of EVs, including exosomes, microvesicles, retrovirus like particles, and apoptotic bodies. Clinical pertinence of these EVs to neuro-oncology will also be discussed.

990 citations

Journal ArticleDOI
23 Jun 2017-Science
TL;DR: The transcriptomes and DNA regulatory elements of human microglia ex vivo and in vitro in comparison to the mouse are defined and systematically relate these features to expression of genes associated with genome-wide association study (GWAS) risk alleles or exhibiting altered expression in neurodegenerative diseases and psychiatric disorders.
Abstract: Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases

796 citations

Journal ArticleDOI
29 Nov 2019-Science
TL;DR: The list of genes likely to be influenced by noncoding variants in AD is revised and expanded and the probable cell types in which they function are suggested to help better understand common genetic variation associated with brain diseases.
Abstract: Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.

414 citations

Journal ArticleDOI
TL;DR: Gross-total resection is associated with improved overall survival, even in elderly patients with glioblastoma, and surgical decisions should be individually tailored to the patient rather than an adherence to age as the sole clinical determinant.
Abstract: Object There is limited information on the relationship between patient age and the clinical benefit of resection in patients with glioblastoma. The purpose of this study was to use a population-based database to determine whether patient age influences the frequency that gross-total resection (GTR) is performed, and also whether GTR is associated with survival difference in different age groups. Methods The authors identified 20,705 adult patients with glioblastoma in the Surveillance, Epidemiology, and End Results (SEER) registry (1998–2009). Surgical practice patterns were defined by the categories of no surgery, subtotal resection (STR), and GTR. Kaplan-Meier and multivariate Cox regression analyses were used to assess the pattern of surgical practice and overall survival. Results The frequency that GTR was achieved in patients with glioblastoma decreased in a stepwise manner as a function of patient age (from 36% [age 18–44 years] to 24% [age ≥ 75]; p < 0.001). For all age groups, glioblastoma patien...

106 citations

Journal ArticleDOI
TL;DR: The development of EVs as a diagnostic platform for the most common form of brain cancer, glioblastoma, is reviewed, potential clinical translational opportunities are discussed and central challenges associated with future clinical applications are identified.
Abstract: Extracellular vesicles (EVs) are cell-secreted vesicles that range from 30-2000 nm in size. These vesicles are secreted by both normal and neoplastic cells. Physiologically, EVs serve multiple critical biologic functions, including cellular remodeling, intracellular communication, modulation of the tumor microenvironment and regulation of immune function. Because EVs contain genetic and proteomic contents that reflect the cell of origin, it is possible to detect tumor-specific material in EVs secreted by cancer cells. Importantly, EVs secreted by cancer cells transgress anatomic compartments and can be detected in the blood, cerebrospinal fluid, and other biofluids of cancer patients. In this context, there is a growing interest in analyzing EVs from the biofluid of cancer patients as a means of disease diagnosis and therapeutic monitoring. In this article, we review the development of EVs as a diagnostic platform for the most common form of brain cancer, glioblastoma, discuss potential clinical translational opportunities and identify the central challenges associated with future clinical applications.

105 citations


Cited by
More filters
01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal Article
TL;DR: Schulz et al. as discussed by the authors investigated whether adult macrophages all share a common developmental origin and found that a population of yolk-sac-derived, tissue-resident macophages was able to develop and persist in adult mice in the absence of hematopoietic stem cells.
Abstract: Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

1,673 citations

Journal Article
TL;DR: It is reported that PTEN activation contributes to trastuzumab's antitumor activity and PTEN deficiency is a powerful predictor for trastzumab resistance, suggesting that PI3K-targeting therapies could overcome this resistance.
Abstract: 2458 Despite dramatic improvements in treatment over the past 40 years, acute lymphoblastic leukemia (ALL) remains one of the most common causes of death from disease in childhood. Glucocorticoids are among the most effective agents used in the treatment of lymphoid malignancies, and patient response to treatment is an important determinant of long-term outcome in childhood ALL. In spite of its clinical significance, the molecular basis of glucocorticoid resistance is still poorly understood. The aim of this study was to develop an experimental model system to define clinically relevant mechanisms of glucocorticoid resistance in childhood ALL. An in vivo model of childhood ALL has been developed in our laboratory, using patient biopsies established as xenografts in immune-deficient nonobese diabetic severe-combined immunodeficient (NOD/SCID) mice. This model is highly representative of the human disease (Lock et al., Blood, 99: 4100-4108, 2002). The in vivo responses of these xenografts to the glucocorticoid dexamethasone (DEX) correlated significantly with patient outcome (p 1 μM) in xenografts from six patients, five of whom died of their disease. In contrast, four DEX-sensitive xenografts (IC50 values 2-fold in sensitive xenografts within 8 hours of treatment. In contrast, Bim induction was dramatically attenuated in DEX-resistant xenografts. These results have identified a clinically significant and novel mechanism of glucocorticoid resistance in childhood ALL, which occurs downstream of receptor-ligand interactions, but upstream of the signalling pathway resulting in Bim induction and apoptosis.

1,574 citations

Journal ArticleDOI
TL;DR: Recent developments in the rapidly expanding understanding of the function, as well as the dysfunction, of microglia in disorders of the CNS are focused on.
Abstract: There has been an explosion of new findings recently giving us insights into the involvement of microglia in central nervous system (CNS) disorders. A host of new molecular tools and mouse models of disease are increasingly implicating this enigmatic type of nervous system cell as a key player in conditions ranging from neurodevelopmental disorders such as autism to neurodegenerative disorders such as Alzheimer's disease and chronic pain. Contemporaneously, diverse roles are emerging for microglia in the healthy brain, from sculpting developing neuronal circuits to guiding learning-associated plasticity. Understanding the physiological functions of these cells is crucial to determining their roles in disease. Here we focus on recent developments in our rapidly expanding understanding of the function, as well as the dysfunction, of microglia in disorders of the CNS.

1,079 citations