scispace - formally typeset
Search or ask a question
Author

David Dempsey

Bio: David Dempsey is an academic researcher from University of Auckland. The author has contributed to research in topics: Geothermal gradient & Induced seismicity. The author has an hindex of 16, co-authored 42 publications receiving 658 citations. Previous affiliations of David Dempsey include University of Canterbury & University of Otago.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the literature on hydraulic fracturing fluid migration is presented, and single-phase flow and transport simulations are performed to quantify how much hydraulic fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition.
Abstract: Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

121 citations

Journal ArticleDOI
TL;DR: In this article, a numerical model of platelet ice processes is developed that predicts crystal texture and c axis distributions, producing virtual incorporated platelet ic with known growth history, which is consistent with the pattern of in situ supercooling just beneath the ocean surface.
Abstract: [1] During the annual growth of landfast ice in McMurdo Sound, Antarctica, an episodic flux of platelet ice crystals from the ocean contributes to the build up of a porous subice platelet layer, which is steadily incorporated into the sea ice cover as it thickens over winter. In November 2007, we examined the spatial variability of these processes by collecting sea ice cores, with simultaneous oceanographic observations, along an east-west transect in the sound. Previously identified draped and bladed platelet ice types were observed. In addition, we identify resumed columnar growth which appears to be a result of geometric selection from the subice platelet layer after the arrival of new platelet crystals from the ocean has ceased. A numerical model of mechanical platelet ice processes is developed that predicts crystal texture and c axis distributions, producing virtual incorporated platelet ice with known growth history. This model demonstrates how a disordered subice platelet layer arises from an initially flat interface and suggests that such a layer is more likely to form later in the growth season. The model also suggests how the grain boundary density in incorporated platelet ice responds to changes in the flux of loose platelet crystals from the ocean. Application of this result to our 2007 platelet ice observations indicates that sea ice in western McMurdo Sound is subject to larger and more persistent platelet fluxes than the ice in the east. This is consistent with the pattern of in situ supercooling just beneath the ocean surface.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize observations and a model for Groningen seismicity to produce forecasts for felt seismicity (M > 2.5) in the period February 2017 to 2024.
Abstract: Earthquakes induced by natural gas extraction from the Groningen reservoir, the Netherlands, put local communities at risk. Responsible operation of a reservoir whose gas reserves are of strategic importance to the country requires understanding of the link between extraction and earthquakes. We synthesize observations and a model for Groningen seismicity to produce forecasts for felt seismicity (M > 2.5) in the period February 2017 to 2024. Our model accounts for poroelastic earthquake triggering and rupture on the 325 largest reservoir faults, using an ensemble approach to model unknown heterogeneity and replicate earthquake statistics. We calculate probability distributions for key model parameters using a Bayesian method that incorporates the earthquake observations with a nonhomogeneous Poisson process. Our analysis indicates that the Groningen reservoir was not critically stressed prior to the start of production. Epistemic uncertainty and aleatoric uncertainty are incorporated into forecasts for three different future extraction scenarios. The largest expected earthquake was similar for all scenarios, with a 5% likelihood of exceeding M 4.0.

58 citations

Journal ArticleDOI
TL;DR: In this paper, a structured machine learning approach was proposed to detect eruption precursors in real-time seismic data streamed from Whakaari, and a model was developed to issue short-term alerts of elevated eruption likelihood and show that, under cross-validation testing, it could provide advanced warning of an unseen eruption in four out of five instances.
Abstract: Sudden steam-driven eruptions strike without warning and are a leading cause of fatalities at touristic volcanoes. Recent deaths following the 2019 Whakaari eruption in New Zealand expose a need for accurate, short-term forecasting. However, current volcano alert systems are heuristic and too slowly updated with human input. Here, we show that a structured machine learning approach can detect eruption precursors in real-time seismic data streamed from Whakaari. We identify four-hour energy bursts that occur hours to days before most eruptions and suggest these indicate charging of the vent hydrothermal system by hot magmatic fluids. We developed a model to issue short-term alerts of elevated eruption likelihood and show that, under cross-validation testing, it could provide advanced warning of an unseen eruption in four out of five instances, including at least four hours warning for the 2019 eruption. This makes a strong case to adopt real-time forecasting models at active volcanoes. In this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaari.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the evolution through winter of a layer of in situ supercooled water beneath the sea ice at a site close to the McMurdo Ice Shelf.
Abstract: Here we describe the evolution through winter of a layer of in situ supercooled water beneath the sea ice at a site close to the McMurdo Ice Shelf. From early winter (May), the temperature of the upper water column was below its surface freezing point, implying contact with an ice shelf at depth. By late winter the supercooled layer was c. 40 m deep with a maximum supercooling of c. 25 mK located 1–2 m below the sea ice-water interface. Transitory in situ supercooling events were also observed, one lasting c. 17 hours and reaching a depth of 70 m. In spite of these very low temperatures the isotopic composition of the water was relatively heavy, suggesting little glacial melt. Further, the water's temperature-salinity signature indicates contributions to water mass properties from High Salinity Shelf Water produced in areas of high sea ice production to the north of McMurdo Sound. Our measurements imply the existence of a heat sink beneath the supercooled layer that extracts heat from the ocean to thicken and cool this layer and contributes to the thickness of the sea ice cover. This sink is linked to the circulation pattern of the McMurdo Sound.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review ten historical EGS projects and find that typically, flow from the wellbore is from preexisting fractures, bottomhole pressure exceeds the minimum principal stress, and pressure-limiting behavior occurs.

259 citations

01 Dec 2010
TL;DR: In this article, a modified calibration of MELTS optimized for silicic systems, dubbed rhyolite-MELTS, using early erupted Bishop pumice as a reference.
Abstract: Silicic magma systems are of great scientific interest and societal importance owing to their role in the evolution of the crust and the hazards posed by volcanic eruptions. MELTS is a powerful and widely used tool to study the evolution of magmatic systems over a wide spectrum of compositions and conditions. However, the current calibration of MELTS fails to correctly predict the position of the quartz þ feldspar saturation surface in temperature, pressure and composition space, making it unsuitable to study silicic systems. We create a modified calibration of MELTS optimized for silicic systems, dubbed rhyolite-MELTS, using early erupted Bishop pumice as a reference. Small adjustments to the calorimetrically determined enthalpy of formation of quartz and of the potassium end-member of alkali feldspar in the MELTS calibration lead to much improved predictions of the quartz þ feldspar saturation surface as a function of pressure. Application of rhyolite-MELTS to the Highland Range Volcanic Sequence (Nevada), the Peach Spring Tuff (Arizona^Nevada^California), and the late-erupted Bishop Tuff (California), using compositions that vary from trachydacite to high-silica rhyolite, shows that the calibration is appropriate for a variety of fluid-bearing silicic systems. Some key observations include the following. (1) The simulated evolutionary paths are consistent with petrographic observations and glass compositions; further work is needed to compare predicted and observed mineral compositions. (2) The nearly invariant nature of silicic magmas is well captured by rhyolite-MELTS; unusual behavior is observed after extensive pseudo-invariant crystallization, suggesting that the new calibration works best for relatively small (i.e.550 wt %) crystallization intervals, comparable with what is observed in volcanic rocks. (3) Our success with rhyolite-MELTS shows that water-bearing systems in which hydrous phases do not play a critical role can be appropriately handled; simulations are sensitive to initial water concentration, and although only a pure-H2O fluid is modeled, suitable amounts of water can be added or subtracted to mimic the effect of CO2 in fluid solubility. Our continuing work on natural systems shows that rhyolite-MELTS is very useful in constraining crystallization conditions, and is particularly well suited to explore the eruptive potential of silicic magmas. We show that constraints placed by rhyoliteMELTS simulations using late-erupted Bishop Tuff whole-rock and melt inclusion compositions are inconsistent with a vertically stratified magma body.

186 citations

Journal ArticleDOI
19 Jun 2014-Nature
TL;DR: Comprehensive seismic data from subduction zone forearcs exhibiting recurring slow earthquakes is compiled and it is shown that the average ratio of compressional (P)-wave velocity to shear (S-wave velocity) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes.
Abstract: Seismic data from subduction zones that exhibit slow earthquakes reveal that the ratio of compressional-wave to shear-wave velocity of the overriding forearc crust is linearly related to the average recurrence time of slow earthquakes and that this may be associated with quartz enrichment within the forearc crust. Pascal Audet and Roland Burgmann present a compilation of seismic data from subduction zones that exhibit recurring slow earthquakes, and show that the ratio of compressional- to shear-wave seismic velocity (vP/vS) of the overlying forearc crust is linearly related to the average recurrence time of slow earthquakes. They propose that variable silica enrichment from slab-derived fluids and upward mineralization in quartz veins can explain the range of observed vP/vS values, and that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge can explain the reduction in tremor recurrence time with progressive silica enrichment. Seismic and geodetic observations in subduction zone forearcs indicate that slow earthquakes, including episodic tremor and slip, recur at intervals of less than six months to more than two years1,2. In Cascadia, slow slip is segmented along strike3 and tremor data show a gradation from large, infrequent slip episodes to small, frequent slip events with increasing depth of the plate interface4. Observations5,6,7 and models8,9 of slow slip and tremor require the presence of near-lithostatic pore-fluid pressures in slow-earthquake source regions; however, direct evidence of factors controlling the variability in recurrence times is elusive. Here we compile seismic data from subduction zone forearcs exhibiting recurring slow earthquakes and show that the average ratio of compressional (P)-wave velocity to shear (S)-wave velocity (vP/vS) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes. In northern Cascadia, forearc vP/vS values decrease with increasing depth of the plate interface and with decreasing tremor-episode recurrence intervals. Low vP/vS values require a large addition of quartz in a mostly mafic forearc environment10,11. We propose that silica enrichment varying from 5 per cent to 15 per cent by volume from slab-derived fluids and upward mineralization in quartz veins12 can explain the range of observed vP/vS values as well as the downdip decrease in vP/vS. The solubility of silica depends on temperature13, and deposition prevails near the base of the forearc crust11. We further propose that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge via dissolution–precipitation creep14 can explain the reduction in tremor recurrence time with progressive silica enrichment. Lower gouge permeability at higher temperatures leads to faster fluid overpressure development and low effective fault-normal stress, and therefore shorter recurrence times. Our results also agree with numerical models of slip stabilization under fault zone dilatancy strengthening15 caused by decreasing fluid pressure as pore space increases. This implies that temperature-dependent silica deposition, permeability reduction and fluid overpressure development control dilatancy and slow-earthquake behaviour.

162 citations

Journal ArticleDOI
16 Mar 2017-Nature
TL;DR: A unifying model for the necessary geological condition of ETS is proposed that reconciles a wide range of seemingly disparate observations and defines a conceptual framework for the study of slip behaviour and the seismogenesis of major faults.
Abstract: Episodic tremor and accompanying slow slip, together called ETS, is most often observed in subduction zones of young and warm subducting slabs. ETS should help us to understand the mechanics of subduction megathrusts, but its mechanism is still unclear. It is commonly assumed that ETS represents a transition from seismic to aseismic behaviour of the megathrust with increasing depth, but this assumption is in contradiction with an observed spatial separation between the seismogenic zone and the ETS zone. Here we propose a unifying model for the necessary geological condition of ETS that explains the relationship between the two zones. By developing numerical thermal models, we examine the governing role of thermo-petrologically controlled fault zone rheology (frictional versus viscous shear). High temperatures in the warm-slab environment cause the megathrust seismogenic zone to terminate before reaching the depth of the intersection of the continental Mohorovicic discontinuity (Moho) and the subduction interface, called the mantle wedge corner. High pore-fluid pressures around the mantle wedge corner give rise to an isolated friction zone responsible for ETS. Separating the two zones is a segment of semi-frictional or viscous behaviour. The new model reconciles a wide range of seemingly disparate observations and defines a conceptual framework for the study of slip behaviour and the seismogenesis of major faults.

155 citations