scispace - formally typeset
Search or ask a question
Author

David E. Cliffel

Bio: David E. Cliffel is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Photosystem I & Electrode. The author has an hindex of 43, co-authored 148 publications receiving 5962 citations. Previous affiliations of David E. Cliffel include Wilmington University & United States Military Academy.


Papers
More filters
Journal ArticleDOI
TL;DR: This review covers advances in electrochemical and biochemical sensor development and usage during 2010 and 2011 and focuses on novel methods and materials, with a particular focus on the increasing use of graphene sheets for sensor material development.
Abstract: This review covers advances in electrochemical and biochemical sensor development and usage during 2010 and 2011 In choosing scholarly articles to contribute to this review, special emphasis was placed on work published in the areas of reference electrodes, potentiometric sensors, voltammetric sensors, amperometric sensors, biosensors, immunosensors, and mass sensors In the past two years there have been a number of important papers, that do not fall into the general subsections contained within the larger sections Such novel advances are very important for the field of electrochemical sensors as they open up new avenues and methods for future research Each section above contains a subsection titled “Other Papers of Interest” that includes such articles and describes their importance to the field in general For example, while most electrochemical techniques for sensing analytes of interest are based on the changes in potential or current, Shan et al1 have developed a completely novel method for performing electrochemical measurements In their work, they report a method for imaging local electrochemical current using the optical signal of the electrode surface generated from a surface plasmon resonance (SPR) The electrochemical current image is based on the fact that the current density can be easily calculated from the local SPR signal The authors demonstrated this concept by imaging traces of TNT on a fingerprint on a gold substrate Full articles and reviews were primarily amassed by searching the SciFinder Scholar and ISI Web of Knowledge Additional articles were found through alternate databases or by perusing analytical journals for pertinent publications Due to the reference limitation, only publications written in English were considered for inclusion Obviously, there have been more published accounts of groundbreaking work with electrochemical and biochemical sensors than those covered here This review is a small sampling of the available literature and not intended to cover every advance of the past two years The literature chosen focuses on new trends in materials, techniques, and clinically relevant applications of novel sensors To ensure proper coverage of these trends, theoretical publications and applications of previously reported sensor development were excluded We want to remind our readers that this review is not intended to provide comprehensive coverage of electrochemical sensor development, but rather to provide a glimpse of the available depth of knowledge published in the past two years This review is meant to focus on novel methods and materials, with a particular focus on the increasing use of graphene sheets for sensor material development For readers seeking more information on the general principles behind electrochemical sensors and electrochemical methods, we recommend other sources with a broader scope2, 3 Electrochemical sensor research is continually providing new insights into a variety of fields and providing a breadth of relevant literature that is worthy of inclusion in this review Unfortunately, it is impossible to cover each publication and unintentional oversights are inevitable We sincerely apologize to the authors of electrochemical and biochemical sensor publications that were inadvertently overlooked

727 citations

Journal ArticleDOI
TL;DR: In this article, place exchange and amide-forming coupling reactions with water-soluble tiopronin-MPCs are described and their products characterized by 1H and 31P NMR, capillary electrophoresis, electrochemistry, and fluorescence spectroscopy.
Abstract: Place-exchange and amide-forming coupling reactions represent two facile and efficient routes to poly-functionalization of water-soluble nanoparticles. In this paper, place-exchange and amide-forming coupling reactions with water-soluble tiopronin-MPCs are described and their products characterized by 1H and 31P NMR, capillary electrophoresis, electrochemistry, and fluorescence spectroscopy. Place-exchange reactions of ligands with tiopronin-MPCs yield products with about half of the ligand exchange expected on the basis of solution stoichiometry and a nonselective exchange and were not noticeably affected by steric encumbrances. Tiopronin-MPCs to which viologens are coupled (avg 36/MPC) adsorb as monolayers on Au electrodes as shown in electrochemical quartz crystal microbalance experiments. Multilayer adsorption occurs on long experimental time scales. The strong adsorption of the viologen-functionalized clusters is ascribed to increased interaction and stability in the viologen reduction products. Capi...

295 citations

Journal ArticleDOI
17 Nov 2008-ACS Nano
TL;DR: It is shown that the protein complexes retain their photonic energy conversion functionality after attachment to the nanoporous electrode surface and, further, that the additional PSI/electrode interfacial area provided by the NPGL allows for an increase in PSI-mediated electron transfer with respect to an analogous 2D system if the pores are sufficiently enlarged by dealloying.
Abstract: Plants and some types of bacteria demonstrate an elegant means to capitalize on the superabundance of solar energy that reaches our planet with their energy conversion process called photosynthesis. Seeking to harness Nature’s optimization of this process, we have devised a biomimetic photonic energy conversion system that makes use of the photoactive protein complex Photosystem I, immobilized on the surface of nanoporous gold leaf (NPGL) electrodes, to drive a photoinduced electric current through an electrochemical cell. The intent of this study is to further the understanding of how the useful functionality of these naturally mass-produced, biological light-harvesting complexes can be integrated with nonbiological materials. Here, we show that the protein complexes retain their photonic energy conversion functionality after attachment to the nanoporous electrode surface and, further, that the additional PSI/electrode interfacial area provided by the NPGL allows for an increase in PSI-mediated electron ...

192 citations

Journal ArticleDOI
TL;DR: Glutathione-coated gold nanoparticles cause no morbidity at any concentration up to and including 60 μM and target primary organs although providing gradual dissipation and clearance over time, suggesting that glutathione may be an attractive alternative to PEG in the design of gold nanoparticle therapeutics.

177 citations

Journal ArticleDOI
10 Nov 2000-Langmuir
TL;DR: In this article, gold, silver, and palladium nanoparticles are coated with monolayers of trimethyl(mercaptoundecyl)ammonium ligands, which are synthesized in aqueous medium and are water soluble.
Abstract: This paper describes gold, silver, and palladium nanoparticles coated with monolayers of trimethyl(mercaptoundecyl)ammonium ligands. The monolayer-protected clusters (MPCs) are synthesized in aqueous medium and are water soluble. In dry films, their highly charged surfaces inhibit the interdigitation of monolayer chains known (transmission electron microscopy) in dry films of alkanethiolate-coated nanoparticles. UV−vis spectra exhibit surface plasmon bands for Au and Ag MPCs at the expected wavelengths but none for Pd clusters. Thermogravimetric and transmission electron microscopy results suggest that Au and Ag nanoparticles readily aggregate through ionic association of the terminal ammonium groups but without metallic core fusion between particles. Two-component multilayers of MPCs can be affixed to surfaces by alternating exposure to anionic, mixed-monolayer hexanethiolate−mercaptoundecanoic acid MPCs and cationic Au ammonium-MPCs.

175 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: This review focuses on biochemical concepts of lipidPeroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting geneexpression and promoting cell death.
Abstract: Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

3,647 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations